1,166 research outputs found

    Optimizing the Drude-Lorentz model for material permittivity: Examples for semiconductors

    Get PDF
    Approximating the frequency dispersion of the permittivity of materials with simple analytical functions is of fundamental importance for understanding and modeling their optical properties. Quite generally, the permittivity can be treated in the complex frequency plane as an analytic function having a countable number of simple poles which determine the dispersion of the permittivity, with the pole weights corresponding to generalized conductivities of the medium at these resonances. The resulting Drude-Lorentz model separates the poles at frequencies with zero real part (Ohm's law and Drude poles) from poles with finite real part (Lorentz poles). To find the parameters of such an analytic function, we minimize the error weighted deviation between the model and measured values of the permittivity. We show examples of such optimizations for various semiconductors (Si, GaAs and Ge), for different frequency ranges and up to five pairs of Lorentz poles accounted for in the model.Comment: arXiv admin note: substantial text overlap with arXiv:1612.0692

    Quantum complementarity of microcavity polaritons

    Get PDF
    We present an experiment that probes polariton quantum correlations by exploiting quantum complementarity. Specifically, we find that polaritons in two distinct idler-modes interfere if and only if they share the same signal-mode so that "which-way" information cannot be gathered. The experimental results prove the existence of polariton pair correlations that store the "which-way" information. This interpretation is confirmed by a theoretical analysis of the measured interference visibility in terms of quantum Langevin equations

    Robustness of energy landscape control for spin networks under decoherence

    Full text link
    Quantum spin networks form a generic system to describe a range of quantum devices for quantum information processing and sensing applications. Understanding how to control them is essential to achieve devices with practical functionalities. Energy landscape shaping is a novel control paradigm to achieve selective transfer of excitations in a spin network with surprisingly strong robustness towards uncertainties in the Hamiltonians. Here we study the effect of decoherence, specifically generic pure dephasing, on the robustness of these controllers. Results indicate that while the effectiveness of the controllers is reduced by decoherence, certain controllers remain sufficiently effective, indicating potential to find highly effective controllers without exact knowledge of the decoherence processes.Comment: 6 pages, 6 figure

    Binding energy and dephasing of biexcitons in In0.18Ga0.82As/GaAs single quantum wells

    Get PDF
    Biexciton binding energies and biexciton dephasing in In0.18Ga0.82As/GaAs single quantum wells have been measured by time-integrated and spectrally resolved four-wave mixing. The biexciton binding energy increases from 1.5 to 2.6 meV for well widths increasing from 1 to 4 nm. The ratio between exciton and biexciton binding energy changes from 0.23 to 0.3 with increasing inhomogeneous broadening, corresponding to increasing well width. From the temperature dependence of the exciton and biexciton four-wave mixing signal decay, we have deduced the acoustic-phonon scattering of the exciton-biexciton transition. It is found to be comparable to that of the exciton transition, indicating that the deformation potential interactions for the exciton and the exciton-biexciton transitions are comparable

    Robustness of Energy Landscape Controllers for Spin Rings under Coherent Excitation Transport

    Full text link
    The design and analysis of controllers to regulate excitation transport in quantum spin rings presents challenges in the application of classical feedback control techniques to synthesize effective control, and generates results in contradiction to the expectations of classical control theory. In this paper, we examine the robustness of controllers designed to optimize the fidelity of an excitation transfer to uncertainty in system and control parameters. We use the logarithmic sensitivity of the fidelity error as the measure of robustness, drawing on the classical control analog of the sensitivity of the tracking error. In our analysis we demonstrate that quantum systems optimized for coherent transport demonstrate significantly different correlation between error and the log-sensitivity depending on whether the controller is optimized for readout at an exact time T or over a time-window about T.Comment: 10 pages, 4 figures, 2 table

    Resonant-state expansion applied to three-dimensional open optical systems: Complete set of static modes

    Get PDF
    We present two alternative complete sets of static modes of a homogeneous dielectric sphere, for their use in the resonant-state expansion (RSE), a rigorous perturbative method in electrodynamics. Physically, these modes are needed to correctly describe the static electric field of a charge redistribution within the optical system due to a perturbation of the permittivity. We demonstrate the convergence of the RSE toward the exact result for a perturbation describing a size reduction of the basis sphere. We then revisit the quarter-sphere perturbation treated by Doost et al. [Phys. Rev. A 90, 013834 (2014)], where only a single static mode for each angular momentum was introduced, and show that using a complete set of static modes leads to a small though non-negligible correction of the RSE result, improving the agreement with finite-element simulations. As another example of applying the RSE with a complete set of static modes, we calculate the resonant states of a dielectric cylinder, also comparing the result with a finite-element simulation

    Resonant-state expansion of three-dimensional open optical systems: Light scattering

    Get PDF
    A rigorous method of calculating the electromagnetic field, the scattering matrix, and scattering cross-sections of an arbitrary finite three-dimensional optical system described by its permittivity distribution is presented. The method is based on the expansion of the Green's function into the resonant states of the system. These can be calculated by any means, including the popular finite element and finite-difference time-domain methods. However, using the resonant-state expansion with a spherically-symmetric analytical basis, such as that of a homogeneous sphere, allows to determine a complete set of the resonant states of the system within a given frequency range. Furthermore, it enables to take full advantage of the expansion of the field outside the system into vector spherical harmonics, resulting in simple analytic expressions. We verify and illustrate the developed approach on an example of a dielectric sphere in vacuum, which has an exact analytic solution known as Mie scattering

    Coherence dynamics and quantum-to-classical crossover in an exciton-cavity system in the quantum strong coupling regime

    Get PDF
    Interaction between light and matter generates optical nonlinearities, which are particularly pronounced in the quantum strong coupling regime. When a single bosonic mode couples to a single fermionic mode, a Jaynes-Cummings (JC) ladder is formed, which we realize here using cavity photons and quantum dot excitons. We measure and model the coherent anharmonic response of this strongly coupled exciton-cavity system at resonance. Injecting two photons into the cavity, we demonstrate a root 2 larger polariton splitting with respect to the vacuum Rabi splitting. This is achieved using coherent nonlinear spectroscopy, specifically four-wave mixing, where the coherence between the ground state and the first (second) rung of the JC ladder can be interrogated for positive (negative) delays. With increasing excitation intensity and thus rising average number of injected photons, we observe spectral signatures of the quantum-to-classical crossover of the strong coupling regime.Peer reviewe

    Retarded Casimir-Polder force on an atom near reflecting microstructures

    Get PDF
    We derive the fully retarded energy shift of a neutral atom in two different geometries useful for modelling etched microstructures. First we calculate the energy shift due to a reflecting cylindrical wire, and then we work out the energy shift due to a semi-infinite reflecting half-plane. We analyze the results for the wire in various limits of the wire radius and the distance of the atom from the wire, and obtain simple asymptotic expressions useful for estimates. For the half-plane we find an exact representation of the Casimir-Polder interaction in terms of a single, fast converging integral, which is easy to evaluate numerically.Comment: 12 pages, 8 figure

    Spin recovery in the 25nm gate length InGaAs field effect transistore

    Get PDF
    We augmented an ensemble Monte-Carlo semiconductor device simulator [3] to incorporate electron spin degrees of freedom using a Bloch equation model to investigate the feasibility of spintronic devices. Results are presented for the steady state polarization and polarization decay due to scattering and spin orbit coupling for a III-V MOSFET device as a function of gate voltages, injection polarization and strain
    • …
    corecore