308 research outputs found
Using the Hadamard and related transforms for simplifying the spectrum of the quantum baker's map
We rationalize the somewhat surprising efficacy of the Hadamard transform in
simplifying the eigenstates of the quantum baker's map, a paradigmatic model of
quantum chaos. This allows us to construct closely related, but new, transforms
that do significantly better, thus nearly solving for many states of the
quantum baker's map. These new transforms, which combine the standard Fourier
and Hadamard transforms in an interesting manner, are constructed from
eigenvectors of the shift permutation operator that are also simultaneous
eigenvectors of bit-flip (parity) and possess bit-reversal (time-reversal)
symmetry.Comment: Version to appear in J. Phys. A. Added discussions; modified title;
corrected minor error
Entanglement transitions in random definite particle states
Entanglement within qubits are studied for the subspace of definite particle
states or definite number of up spins. A transition from an algebraic decay of
entanglement within two qubits with the total number of qubits, to an
exponential one when the number of particles is increased from two to three is
studied in detail. In particular the probability that the concurrence is
non-zero is calculated using statistical methods and shown to agree with
numerical simulations. Further entanglement within a block of qubits is
studied using the log-negativity measure which indicates that a transition from
algebraic to exponential decay occurs when the number of particles exceeds .
Several algebraic exponents for the decay of the log-negativity are
analytically calculated. The transition is shown to be possibly connected with
the changes in the density of states of the reduced density matrix, which has a
divergence at the zero eigenvalue when the entanglement decays algebraically.Comment: Substantially added content (now 24 pages, 5 figures) with a
discussion of the possible mechanism for the transition. One additional
author in this version that is accepted for publication in Phys. Rev.
Classical bifurcations and entanglement in smooth Hamiltonian system
We study entanglement in two coupled quartic oscillators. It is shown that
the entanglement, as measured by the von Neumann entropy, increases with the
classical chaos parameter for generic chaotic eigenstates. We consider certain
isolated periodic orbits whose bifurcation sequence affects a class of quantum
eigenstates, called the channel localized states. For these states, the
entanglement is a local minima in the vicinity of a pitchfork bifurcation but
is a local maxima near a anti-pitchfork bifurcation. We place these results in
the context of the close connections that may exist between entanglement
measures and conventional measures of localization that have been much studied
in quantum chaos and elsewhere. We also point to an interesting near-degeneracy
that arises in the spectrum of reduced density matrices of certain states as an
interplay of localization and symmetry.Comment: 7 pages, 6 figure
Local Identities Involving Jacobi Elliptic Functions
We derive a number of local identities of arbitrary rank involving Jacobi
elliptic functions and use them to obtain several new results. First, we
present an alternative, simpler derivation of the cyclic identities discovered
by us recently, along with an extension to several new cyclic identities of
arbitrary rank. Second, we obtain a generalization to cyclic identities in
which successive terms have a multiplicative phase factor exp(2i\pi/s), where s
is any integer. Third, we systematize the local identities by deriving four
local ``master identities'' analogous to the master identities for the cyclic
sums discussed by us previously. Fourth, we point out that many of the local
identities can be thought of as exact discretizations of standard nonlinear
differential equations satisfied by the Jacobian elliptic functions. Finally,
we obtain explicit answers for a number of definite integrals and simpler forms
for several indefinite integrals involving Jacobi elliptic functions.Comment: 47 page
Entanglement production by interaction quenches of quantum chaotic subsystems
The entanglement production in bipartite quantum systems is studied for initially unentangled product eigenstates of the subsystems, which are assumed to be quantum chaotic. Based on a perturbative computation of the Schmidt eigenvalues of the reduced density matrix, explicit expressions for the time-dependence of entanglement entropies, including the von Neumann entropy, are given. An appropriate rescaling of time and the entropies by their saturation values leads a universal curve, independent of the interaction. The extension to the nonperturbative regime is performed using a recursively embedded perturbation theory to produce the full transition and the saturation values. The analytical results are found to be in good agreement with numerical results for random matrix computations and a dynamical system given by a pair of coupled kicked rotors
- …