Abstract

We rationalize the somewhat surprising efficacy of the Hadamard transform in simplifying the eigenstates of the quantum baker's map, a paradigmatic model of quantum chaos. This allows us to construct closely related, but new, transforms that do significantly better, thus nearly solving for many states of the quantum baker's map. These new transforms, which combine the standard Fourier and Hadamard transforms in an interesting manner, are constructed from eigenvectors of the shift permutation operator that are also simultaneous eigenvectors of bit-flip (parity) and possess bit-reversal (time-reversal) symmetry.Comment: Version to appear in J. Phys. A. Added discussions; modified title; corrected minor error

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 11/12/2019