134 research outputs found
A High-Throughput Mechanical Activator for Cartilage Engineering Enables Rapid Screening of in vitro Response of Tissue Models to Physiological and Supra-Physiological Loads
Articular cartilage is crucially influenced by loading during development, health, and disease. However, our knowledge of the mechanical conditions that promote engineered cartilage maturation or tissue repair is still incomplete. Current in vitro models that allow precise control of the local mechanical environment have been dramatically limited by very low throughput, usually just a few specimens per experiment. To overcome this constraint, we have developed a new device for the high throughput compressive loading of tissue constructs: the High Throughput Mechanical Activator for Cartilage Engineering (HiT-MACE), which allows the mechanoactivation of 6 times more samples than current technologies. With HiT-MACE we were able to apply cyclic loads in the physiological (e.g., equivalent to walking and normal daily activity) and supra-physiological range (e.g., injurious impacts or extensive overloading) to up to 24 samples in one single run. In this report, we compared the early response of cartilage to physiological and supra-physiological mechanical loading to the response to IL-1β exposure, a common but rudimentary in vitro model of cartilage osteoarthritis. Physiological loading rapidly upregulated gene expression of anabolic markers along the TGF-β1 pathway. Notably, TGF-β1 or serum was not included in the medium. Supra-physiological loading caused a mild catabolic response while IL-1β exposure drove a rapid anabolic shift. This aligns well with recent findings suggesting that overloading is a more realistic and biomimetic model of cartilage degeneration. Taken together, these findings showed that the application of HiT-MACE allowed the use of larger number of samples to generate higher volume of data to effectively explore cartilage mechanobiology, which will enable the design of more effective repair and rehabilitation strategies for degenerative cartilage pathologies
Prognostic Value of Magnesium in COVID-19: Findings from the COMEPA Study
Magnesium (Mg) plays a key role in infections. However, its role in coronavirus disease 2019 (COVID-19) is still underexplored, particularly in long-term sequelae. The aim of the present study was to examine the prognostic value of serum Mg levels in older people affected by COVID-19. Patients were divided into those with serum Mg levels ≤1.96 vs. >1.96 mg/dL, according to the Youden index. A total of 260 participants (mean age 65 years, 53.8% males) had valid Mg measurements. Serum Mg had a good accuracy in predicting in-hospital mortality (area under the curve = 0.83; 95% CI: 0.74–0.91). Low serum Mg at admission significantly predicted in-hospital death (HR = 1.29; 95% CI: 1.03–2.68) after adjusting for several confounders. A value of Mg ≤ 1.96 mg/dL was associated with a longer mean length of stay compared to those with a serum Mg > 1.96 (15.2 vs. 12.7 days). Low serum Mg was associated with a higher incidence of long COVID symptomatology (OR = 2.14; 95% CI: 1.30–4.31), particularly post-traumatic stress disorder (OR = 2.00; 95% CI: 1.24–16.40). In conclusion, low serum Mg levels were significant predictors of mortality, length of stay, and onset of long COVID symptoms, indicating that measuring serum Mg in COVID-19 may be helpful in the prediction of complications related to the disease
Polyamide worm gear: manufacturing and performance
The focus of this paper is to establish a characterisation method for seven polyamide (PA) grades to determine the major material to manufacture an automotive worm gear. The composite properties were measured according to the worm gear loadings: tensile strength, Young's modulus, abrasion and impact resistance. They were also correlated to the PA moisture absorption and its glass fibre (GF) reinforcement. The data from mechanical tests were applied in the finite element analysis (FEA) using the von Mises stress criterion. Before the rig tests of the PA worm gears, the injection process was evaluated, through the capillary rheometry. A higher difficulty to process PA 6/6 30% GF was found, due to its lower apparent viscosity. In the end, the influence of moisture absorption was as decisive to the gear's material selection as the GF to the pinion. Thus, the PAs with the best performance were: PA 6 with 30% GF (gear) and with PA 60% GF (pinion)
Relationship between B-type natriuretic peptide levels and echocardiographic indices of left ventricular filling pressures in post-cardiac surgery patients
<p>Abstract</p> <p>Background</p> <p>B-type natriuretic peptide (BNP) is increased in post-cardiac surgery patients, however the mechanisms underlying BNP release are still unclear. In the current study, we aimed to assess the relationship between postoperative BNP levels and left ventricular filling pressures in post-cardiac surgery patients.</p> <p>Methods</p> <p>We prospectively enrolled 134 consecutive patients referred to our Center 8 ± 5 days after cardiac surgery. BNP was sampled at hospital admission and related to the following echocardiographic parameters: left ventricular (LV) diastolic volume (DV), LV systolic volume (SV), LV ejection fraction (EF), LV mass, relative wall thickness (RWT), indexed left atrial volume (<sub>i</sub>LAV), mitral inflow E/A ratio, mitral E wave deceleration time (DT), ratio of the transmitral E wave to the Doppler tissue early mitral annulus velocity (E/E').</p> <p>Results</p> <p>A total of 124 patients had both BNP and echocardiographic data. The BNP values were significantly elevated (mean 353 ± 356 pg/ml), with normal value in only 17 patients (13.7%). Mean LVEF was 59 ± 10% (LVEF ≥50% in 108 pts). There was no relationship between BNP and LVEF (p = 0.11), LVDV (p = 0.88), LVSV (p = 0.50), E/A (p = 0.77), DT (p = 0.33) or RWT (p = 0.50). In contrast, BNP was directly related to E/E' (p < 0.001), LV mass (p = 0.006) and <sub>i</sub>LAV (p = 0.026). At multivariable regression analysis, age and E/E' were the only independent predictors of BNP levels.</p> <p>Conclusion</p> <p>In post-cardiac surgery patients with overall preserved LV systolic function, the significant increase in BNP levels is related to E/E', an echocardiographic parameter of elevated LV filling pressures which indicates left atrial pressure as a major determinant in BNP release in this clinical setting.</p
Micro-RNA-21 (biomarker) and global longitudinal strain (functional marker) in detection of myocardial fibrotic burden in severe aortic valve stenosis: a pilot study
An experimental methodology to study polymer crystallization under processing conditions. The influence of high cooling rates
A new experimental route for investigating polymer crystallization under very high cooling rates (up to 2000\ub0C/s) is described. A complete and exhaustive description of the apparatus employed for preparing thin quenched samples (100-200. \u3bcm thick) is reported, the cooling mechanism and the temperature distribution across sample thickness is also analysed, showing that the final structure is determined only by the thermal history imposed by the fast quench apparatus. Details concerning the characterization techniques used to probe the final structure are reported, including density measurements and wide angle X-ray diffraction patterns. Experimental results concerning isotactic polypropylene, polyethylenetherephthalate and polyamide 6 are reported, showing the reliability of this experimental route to assess not only a quantitative information but also a qualitative description of the crystallization behaviour of different classes of semi-crystalline polymers
Phenomenological approach to compare the crystallization kinetics of isotactic polypropylene and polyamide-6 under pressure
Reliable experimental data for semicrystalline polymers crystallized under pressure are supplied on the basis of a model experiment in which drastic solidification conditions are applied. The influence of the pressure and cooling rate on some properties, such as the density and microhardness, and on the product morphology, as investigated with wide-angle X-ray scattering (WAXS), is stressed. Results for isotactic polypropylene (iPP) samples display a lower density and a lower microhardness with increasing pressure over a wide range of cooling rates (from 0.01 to 20 °C/s). Polyamide-6 (PA6) samples exhibit the opposite behavior, with the density and microhardness increasing at higher pressures over the entire range of cooling rates investigated (from 1 to 200 °C/s). A deconvolution technique applied to iPP and PA6 WAXS patterns has allowed us to evaluate the final phase content and to assess the crystallization kinetics. A negative influence of pressure on the α-crystalline phase crystallization kinetics can be observed for iPP, whereas a slightly positive influence of pressure on the crystallization kinetics of PA6 can be noted. © 2001 John Wiley & Sons, Inc. J. Polym. Sci. Part B: Polym. Phys
Isotactic polypropylene solidification under pressure and high cooling rates. A master curve approach
- …
