31,519 research outputs found

    Tracking in a space variant active vision system

    Full text link
    Without the ability to foveate on and maintain foveation, active vision for applications such as surveillance, object recognition and object tracking are difficult to build. Although foveation in cartesian coordinates is being actively pursued by many, multi-resolution high accuracy foveation in log polar space has not been given much attention. This paper addresses the use of foveation to track a single object as well as multiple objects for a simulated space variant active vision system. Complex logarithmic mapping is chosen firstly because it provides high resolution and wide angle viewing. Secondly, the spatially variant structure of log polar space leads to an object increasing in size as it moves towards the fovea. This is important as we know which object is closer to the fovea at any instant in time.<br /

    Splicing-coupled 3' end formation requires a terminal splice acceptor site, but not intron excision

    Get PDF
    Splicing of human pre-mRNA is reciprocally coupled to 3′ end formation by terminal exon definition, which occurs co-transcriptionally. It is required for the final maturation of most human pre-mRNAs and is therefore important to understand. We have used several strategies to block splicing at specific stages in vivo and studied their effect on 3′ end formation. We demonstrate that a terminal splice acceptor site is essential to establish coupling with the poly(A) signal in a chromosomally integrated β-globin gene. This is in part to alleviate the suppression of 3′ end formation by U1 small nuclear RNA, which is known to bind pre-mRNA at the earliest stage of spliceosome assembly. Interestingly, blocks to splicing that are subsequent to terminal splice acceptor site function, but before catalysis, have little observable effect on 3′ end formation. These data suggest that early stages of spliceosome assembly are sufficient to functionally couple splicing and 3′ end formation, but that on-going intron removal is less critical

    On the relation between nuclear and nucleon Structure Functions and their moments

    Full text link
    Calculations of nuclear Structure Functions (SF) F_k^A(x,Q^2) routinely exploit a generalized convolution, involving the SF for nucleons F_k^N and the linking SF f^{PN,A} of a fictitious nucleus, composed of point-particles, with the latter usually expressed in terms of hadronic degrees of freedom. For finite Q^2 the approach seemed to be lacking a solid justification and the same is the case for recently proposed, effective nuclear parton distribution functions (pdf), which exactly reproduce the above-mentioned hadronically computed F_k^A. Many years ago Jaffe and West proved the above convolution in the Plane Wave Impulse Approximation (PWIA) for the nuclear components in the convolution. In the present note we extend the above proof to include classes of nuclear Final State Interactions (FSI). One and the same function appears to relate parton distribution functions (pdf) in nuclei and nucleons, and SF for nuclear targets and for nucleons. That relation is the previously conjectured one,with an entirely different interpretation of f^{PN,A}. We conclude with an extensive analysis of moments of nuclear SF based on the generalized convolution. Characteristics of those moments are shown to be quite similar to the same for a nucleon. We conclude that the above evidences asymptotic freedom of a nucleon in a medium and not of a composite nucleus.Comment: 18 pages, 9 figure

    Taurus II Stage Test Simulations: Using Large-Scale CFD Simulations to Provide Critical Insight into Plume Induced Environments During Design

    Get PDF
    This paper describes the use of targeted Loci/CHEM CFD simulations to evaluate the effects of a dual-engine first-stage hot-fire test on an evolving integrated launch pad/test article design. This effort was undertaken as a part of the NESC Independent Assessment of the Taurus II Stage Test Series. The underlying conceptual model included development of a series of computational models and simulations to analyze the plume induced environments on the pad, facility structures and test article. A pathfinder simulation was first developed, capable of providing quick-turn around evaluation of plume impingement pressures on the flame deflector. Results from this simulation were available in time to provide data for an ongoing structural assessment of the deflector. The resulting recommendation was available in a timely manner and was incorporated into construction schedule for the new launch stand under construction at Wallops Flight Facility. A series of Reynolds-Averaged Navier-Stokes (RANS) quasi-steady simulations representative of various key elements of the test profile was performed to identify potential concerns with the test configuration and test profile. As required, unsteady Hybrid-RANS/LES simulations were performed, to provide additional insight into critical aspects of the test sequence. Modifications to the test-specific hardware and facility structures thermal protection as well as modifications to the planned hot-fire test profile were implemented based on these simulation results

    Poly(A) Polymerase and the Nuclear Poly(A) Binding Protein, PABPN1, Coordinate the Splicing and Degradation of a Subset of Human Pre-mRNAs

    Get PDF
    Most human protein-encoding transcripts contain multiple introns that are removed by splicing. Although splicing catalysis is frequently cotranscriptional, some introns are excised after polyadenylation. Accumulating evidence suggests that delayed splicing has regulatory potential, but the mechanisms are still not well understood. Here we identify a terminal poly(A) tail as being important for a subset of intron excision events that follow cleavage and polyadenylation. In these cases, splicing is promoted by the nuclear poly(A) binding protein, PABPN1, and poly(A) polymerase (PAP). PABPN1 promotes intron excision in the context of 3′-end polyadenylation but not when bound to internal A-tracts. Importantly, the ability of PABPN1 to promote splicing requires its RNA binding and, to a lesser extent, PAP-stimulatory functions. Interestingly, an N-terminal alanine expansion in PABPN1 that is thought to cause oculopharyngeal muscular dystrophy cannot completely rescue the effects of PABPN1 depletion, suggesting that this pathway may have relevance to disease. Finally, inefficient polyadenylation is associated with impaired recruitment of splicing factors to affected introns, which are consequently degraded by the exosome. Our studies uncover a new function for polyadenylation in controlling the expression of a subset of human genes via pre-mRNA splicing
    • …
    corecore