24,359 research outputs found
A new approach to the study of quasi-normal modes of rotating stars
We propose a new method to study the quasi-normal modes of rotating
relativistic stars. Oscillations are treated as perturbations in the frequency
domain of the stationary, axisymmetric background describing a rotating star.
The perturbed quantities are expanded in circular harmonics, and the resulting
2D-equations they satisfy are integrated using spectral methods in the
(r,theta)-plane. The asymptotic conditions at infinity, needed to find the mode
frequencies, are implemented by generalizing the standing wave boundary
condition commonly used in the non rotating case. As a test, the method is
applied to find the quasi-normal mode frequencies of a slowly rotating star.Comment: 24 pages, 7 figures, submitted to Phys. Rev.
Universality of slow decorrelation in KPZ growth
There has been much success in describing the limiting spatial fluctuations
of growth models in the Kardar-Parisi-Zhang (KPZ) universality class. A proper
rescaling of time should introduce a non-trivial temporal dimension to these
limiting fluctuations. In one-dimension, the KPZ class has the dynamical
scaling exponent , that means one should find a universal space-time
limiting process under the scaling of time as , space like
and fluctuations like as .
In this paper we provide evidence for this belief. We prove that under
certain hypotheses, growth models display temporal slow decorrelation. That is
to say that in the scalings above, the limiting spatial process for times and are identical, for any . The hypotheses are known
to be satisfied for certain last passage percolation models, the polynuclear
growth model, and the totally / partially asymmetric simple exclusion process.
Using slow decorrelation we may extend known fluctuation limit results to
space-time regions where correlation functions are unknown.
The approach we develop requires the minimal expected hypotheses for slow
decorrelation to hold and provides a simple and intuitive proof which applied
to a wide variety of models.Comment: Exposition improved, typos correcte
Anisotropic KPZ growth in 2+1 dimensions: fluctuations and covariance structure
In [arXiv:0804.3035] we studied an interacting particle system which can be
also interpreted as a stochastic growth model. This model belongs to the
anisotropic KPZ class in 2+1 dimensions. In this paper we present the results
that are relevant from the perspective of stochastic growth models, in
particular: (a) the surface fluctuations are asymptotically Gaussian on a
sqrt(ln(t)) scale and (b) the correlation structure of the surface is
asymptotically given by the massless field.Comment: 13 pages, 4 figure
Two distinct desynchronization processes caused by lesions in globally coupled neurons
To accomplish a task, the brain works like a synchronized neuronal network
where all the involved neurons work together. When a lesion spreads in the
brain, depending on its evolution, it can reach a significant portion of
relevant area. As a consequence, a phase transition might occur: the neurons
desynchronize and cannot perform a certain task anymore. Lesions are
responsible for either disrupting the neuronal connections or, in some cases,
for killing the neuron. In this work, we will use a simplified model of
neuronal network to show that these two types of lesions cause different types
of desynchronization.Comment: 5 pages, 3 figure
ATCA observations of the galaxy cluster Abell 3921 - I. Radio emission from the central merging sub-clusters
We present the analysis of our 13 and 22 cm ATCA observations of the central
region of the merging galaxy cluster A3921 (z=0.094). We investigated the
effects of the major merger between two sub-clusters on the star formation (SF)
and radio emission properties of the confirmed cluster members. The origin of
SF and the nature of radio emission in cluster galaxies was investigated by
comparing their radio, optical and X-ray properties. We also compared the radio
source counts and the percentage of detected radio galaxies with literature
data. We detected 17 radio sources above the flux density limit of 0.25
mJy/beam in the central field of A3921, among which 7 are cluster members. 9
galaxies with star-forming optical spectra were observed in the collision
region of the merging sub-clusters. They were not detected at radio
wavelengths, giving upper limits for their star formation rate significantly
lower than those typically found in late-type, field galaxies. Most of these
star-forming objects are therefore really located in the high density part of
the cluster, and they are not infalling field objects seen in projection at the
cluster centre. Their SF episode is probably related to the cluster collision
that we observe in its very central phase. None of the galaxies with
post-starburst optical spectra was detected down our 2 flux density
limit, confirming that they are post-starburst and not dusty star-forming
objects. We finally detected a narrow-angle tail (NAT) source associated with
the second brightest cluster galaxy (BG2), whose diffuse component is a partly
detached pair of tails from an earlier period of activity of the BG2 galaxy.Comment: 17 pages, 9 figures, accepted for publication in A&A, date of
acceptance 29/06/2006. A version of the paper with higher resolution images
can be downloaded at:
http://astro.uibk.ac.at/~c.ferrari/ATCA_Paper/A3921_ATCA.pd
From interacting particle systems to random matrices
In this contribution we consider stochastic growth models in the
Kardar-Parisi-Zhang universality class in 1+1 dimension. We discuss the large
time distribution and processes and their dependence on the class on initial
condition. This means that the scaling exponents do not uniquely determine the
large time surface statistics, but one has to further divide into subclasses.
Some of the fluctuation laws were first discovered in random matrix models.
Moreover, the limit process for curved limit shape turned out to show up in a
dynamical version of hermitian random matrices, but this analogy does not
extend to the case of symmetric matrices. Therefore the connections between
growth models and random matrices is only partial.Comment: 18 pages, 8 figures; Contribution to StatPhys24 special issue; minor
corrections in scaling of section 2.
A Feature Tracking velocimetry technique applied to inclined negatively buoyant jets
We have applied a Feature Tracking Velocimetry (FTV) technique to measure displacements of particles on
inclined negatively buoyant jets (INBJs), issuing from a circular sharp-edged orifice, in order to investigate, among the
others, the symmetry properties of the velocity field on this phenomenon. Feature Tracking Velocimetry is less sensitive
to the appearance and disappearance of particles and to high velocity gradients than classical Particle Image
Velocimetry (PIV). The basic idea of Feature Tracking Velocimetry is to compare windows only where the motion
detection may be successful, that is where there are high luminosity gradients. The Feature Tracking Velocimetry
algorithm presented here is suitable in presence of different seeding densities, where other techniques produce
significant errors, due to the non-homogeneous seeding at the boundary of a flow. The Feature Tracking Velocimetry
algorithm has been tested on laboratory experiments regarding simple jets (SJs) and inclined negatively buoyant jets
released from a sharp-edged orifice. We present here velocity statistics, from the first to the fourth order, to study,
among the others, the differences between simple jets and inclined negatively buoyant jets, and to investigate how the
increase in buoyancy affects the inclined negatively buoyant jet behavior. We remark that, to the best of authorsâ
knowledge, this is the first attempt to investigate velocity statistics of an order higher than the second on Inclined
Negatively Buoyant Jets. Among the others quantities, the mean streamwise velocity decay and the integral Turbulent
Kinetic Energy have been measured and analyzed, both along the jet axis and in the upper and lower region of the
simple jets and inclined negatively buoyant jets, as well as the streamwise and spanwise velocity skewness and kurtosis
evolution along the axis. Results show the role of buoyancy in modifying the inclined negatively buoyant jet features;
moreover, it is highlighted that the asymmetry of inclined negatively buoyant jets cannot be considered only a far field
feature of this phenomenon, as it arises very close to the release point
Mean Field Voter Model of Election to the House of Representatives in Japan
In this study, we propose a mechanical model of a plurality election based on
a mean field voter model. We assume that there are three candidates in each
electoral district, i.e., one from the ruling party, one from the main
opposition party, and one from other political parties. The voters are
classified as fixed supporters and herding (floating) voters with ratios of
and , respectively. Fixed supporters make decisions based on their
information and herding voters make the same choice as another randomly
selected voter. The equilibrium vote-share probability density of herding
voters follows a Dirichlet distribution. We estimate the composition of fixed
supporters in each electoral district and using data from elections to the
House of Representatives in Japan (43rd to 47th). The spatial inhomogeneity of
fixed supporters explains the long-range spatial and temporal correlations. The
estimated values of are close to the estimates obtained from a survey.Comment: 11 pages, 7 figure
- âŠ