1,211 research outputs found

    Experimental evidence for the role of cantori as barriers in a quantum system

    Full text link
    We investigate the effect of cantori on momentum diffusion in a quantum system. Ultracold caesium atoms are subjected to a specifically designed periodically pulsed standing wave. A cantorus separates two chaotic regions of the classical phase space. Diffusion through the cantorus is classically predicted. Quantum diffusion is only significant when the classical phase-space area escaping through the cantorus per period greatly exceeds Planck's constant. Experimental data and a quantum analysis confirm that the cantori act as barriers.Comment: 19 pages including 9 figures, Accepted for publication in Physical Review E in March 199

    Quantum and classical chaos for a single trapped ion

    Get PDF
    In this paper we investigate the quantum and classical dynamics of a single trapped ion subject to nonlinear kicks derived from a periodic sequence of Guassian laser pulses. We show that the classical system exhibits diffusive growth in the energy, or 'heating', while quantum mechanics suppresses this heating. This system may be realized in current single trapped-ion experiments with the addition of near-field optics to introduce tightly focussed laser pulses into the trap.Comment: 8 pages, REVTEX, 8 figure

    Climate response to large, high-latitude and low-latitude volcanic eruptions in the Community Climate System Model

    Get PDF
    Explosive volcanism is known to be a leading natural cause of climate change. The second half of the 13th century was likely the most volcanically perturbed half-century of the last 2000 years, although none of the major 13th century eruptions have been clearly attributed to specific volcanoes. This period was in general a time of transition from the relatively warm Medieval period to the colder Little Ice Age, but available proxy records are insufficient on their own to clearly assess whether this transition is associated with volcanism. This context motivates our investigation of the climate system sensitivity to high- and low-latitude volcanism using the fully coupled NCAR Community Climate System Model (CCSM3). We evaluate two sets of ensemble simulations, each containing four volcanic pulses, with the first set representing them as a sequence of tropical eruptions and the second representing eruptions occurring in the mid-high latitudes of both the Northern and Southern hemispheres. The short-term, direct radiative impacts of tropical and high- latitude eruptions include significant cooling over the continents in summer and cooling over regions of increased sea-ice concentration in Northern Hemisphere (NH) winter. A main dynamical impact of moderate tropical eruptions is a winter warming pattern across northern Eurasia. Furthermore, both ensembles show significant reductions in global precipitation, especially in the summer monsoon regions. The most important long-term impact is the cooling of the high-latitude NH produced by multiple tropical eruptions, suggesting that positive feedbacks associated with ice and snow cover could lead to long-term climate cooling in the Arctic

    Manifolds with small Dirac eigenvalues are nilmanifolds

    Full text link
    Consider the class of n-dimensional Riemannian spin manifolds with bounded sectional curvatures and diameter, and almost non-negative scalar curvature. Let r=1 if n=2,3 and r=2^{[n/2]-1}+1 if n\geq 4. We show that if the square of the Dirac operator on such a manifold has rr small eigenvalues, then the manifold is diffeomorphic to a nilmanifold and has trivial spin structure. Equivalently, if M is not a nilmanifold or if M is a nilmanifold with a non-trivial spin structure, then there exists a uniform lower bound on the r-th eigenvalue of the square of the Dirac operator. If a manifold with almost nonnegative scalar curvature has one small Dirac eigenvalue, and if the volume is not too small, then we show that the metric is close to a Ricci-flat metric on M with a parallel spinor. In dimension 4 this implies that M is either a torus or a K3-surface

    Timed Implementation Relations for the Distributed Test Architecture

    Get PDF
    In order to test systems that have physically distributed interfaces, called ports, we might use a distributed approach in which there is a separate tester at each port. If the testers do not synchronise during testing then we cannot always determine the relative order of events observed at different ports and this leads to new notions of correctness that have been described using corresponding implementation relations. We study the situation in which each tester has a local clock and timestamps its observations. If we know nothing about how the local clocks relate then this does not affect the implementation relation while if the local clocks agree exactly then we can reconstruct the sequence of observations made. In practice, however, we are likely to be between these extremes: the local clocks will not agree exactly but we have some information regarding how they can differ. We start by assuming that a local tester interacts synchronously with the corresponding port of the system under test and then extend this to the case where communications can be asynchronous, considering both the first-in-first-out (FIFO) case and the non-FIFO case. The new implementation relations are stronger than implementation relations for distributed testing that do not use timestamps but still reflect the distributed nature of observations. This paper explores these alternatives and derives corresponding implementation relations

    Exponential Gain in Quantum Computing of Quantum Chaos and Localization

    Full text link
    We present a quantum algorithm which simulates the quantum kicked rotator model exponentially faster than classical algorithms. This shows that important physical problems of quantum chaos, localization and Anderson transition can be modelled efficiently on a quantum computer. We also show that a similar algorithm simulates efficiently classical chaos in certain area-preserving maps.Comment: final published versio

    Quantum Poincar\'e Recurrences

    Full text link
    We show that quantum effects modify the decay rate of Poincar\'e recurrences P(t) in classical chaotic systems with hierarchical structure of phase space. The exponent p of the algebraic decay P(t) ~ 1/t^p is shown to have the universal value p=1 due to tunneling and localization effects. Experimental evidence of such decay should be observable in mesoscopic systems and cold atoms.Comment: revtex, 4 pages, 4 figure

    Phase Control of Nonadiabaticity-induced Quantum Chaos in An Optical Lattice

    Get PDF
    The qualitative nature (i.e. integrable vs. chaotic) of the translational dynamics of a three-level atom in an optical lattice is shown to be controllable by varying the relative laser phase of two standing wave lasers. Control is explained in terms of the nonadiabatic transition between optical potentials and the corresponding regular to chaotic transition in mixed classical-quantum dynamics. The results are of interest to both areas of coherent control and quantum chaos.Comment: 3 figures, 4 pages, to appear in Physical Review Letter

    Banks' risk assessment of Swedish SMEs

    Get PDF
    Building on the literatures on asymmetric information and risk taking, this paper applies conjoint experiments to investigate lending officers' probabilities of supporting credit to established or existing SMEs. Using a sample of 114 Swedish lending officers, we test hypotheses concerning how information on the borrower's ability to repay the loan; alignment of risk preferences; and risk sharing affect their willingness to grant credit. Results suggest that features that reduce the risk to the bank and shift the risk to the borrower have the largest impact. The paper highlights the interaction between factors that influence the credit decision. Implications for SMEs, banks and research are discussed

    X-linked Inhibitor of Apoptosis Complicated by Granulomatous Lymphocytic Interstitial Lung Disease (GLILD) and Granulomatous Hepatitis

    Get PDF
    The X-linked inhibitor of apoptosis (XIAP) deficiency is a primary immunodeficiency characterized by Epstein-Barr virus (EBV)-driven hemophagocytic lymphohistiocytosis (HLH), splenomegaly, and colitis. Here, we present, for the first time, granulomatous hepatitis and granulomatous and lymphocytic interstitial lung disease (GLILD) as manifestations of XIAP deficiency. We report successful treatment of GLILD in XIAP deficiency with rituximab and azathioprine and discuss the role of XIAP deficiency in immune dysregulation
    • ā€¦
    corecore