17 research outputs found

    Tumor response to radiotherapy is dependent on genotype-associated mechanisms in vitro and in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have previously shown that in vitro radiosensitivity of human tumor cells segregate non-randomly into a limited number of groups. Each group associates with a specific genotype. However we have also shown that abrogation of a single gene (p21) in a human tumor cell unexpectedly sensitized xenograft tumors comprised of these cells to radiotherapy while not affecting in vitro cellular radiosensitivity. Therefore in vitro assays alone cannot predict tumor response to radiotherapy.</p> <p>In the current work, we measure in vitro radiosensitivity and in vivo response of their xenograft tumors in a series of human tumor lines that represent the range of radiosensitivity observed in human tumor cells. We also measure response of their xenograft tumors to different radiotherapy protocols. We reduce these data into a simple analytical structure that defines the relationship between tumor response and total dose based on two coefficients that are specific to tumor cell genotype, fraction size and total dose.</p> <p>Methods</p> <p>We assayed in vitro survival patterns in eight tumor cell lines that vary in cellular radiosensitivity and genotype. We also measured response of their xenograft tumors to four radiotherapy protocols: 8 × 2 Gy; 2 × 5Gy, 1 × 7.5 Gy and 1 × 15 Gy. We analyze these data to derive coefficients that describe both in vitro and in vivo responses.</p> <p>Results</p> <p>Response of xenografts comprised of human tumor cells to different radiotherapy protocols can be reduced to only two coefficients that represent 1) total cells killed as measured in vitro 2) additional response in vivo not predicted by cell killing. These coefficients segregate with specific genotypes including those most frequently observed in human tumors in the clinic. Coefficients that describe in vitro and in vivo mechanisms can predict tumor response to any radiation protocol based on tumor cell genotype, fraction-size and total dose.</p> <p>Conclusions</p> <p>We establish an analytical structure that predicts tumor response to radiotherapy based on coefficients that represent in vitro and in vivo responses. Both coefficients are dependent on tumor cell genotype and fraction-size. We identify a novel previously unreported mechanism that sensitizes tumors in vivo; this sensitization varies with tumor cell genotype and fraction size.</p

    The retinoid anticancer signal: mechanisms of target gene regulation

    Get PDF
    Retinoids induce growth arrest, differentiation, and cell death in many cancer cell types. One factor determining the sensitivity or resistance to the retinoid anticancer signal is the transcriptional response of retinoid-regulated target genes in cancer cells. We used cDNA microarray to identify 31 retinoid-regulated target genes shared by two retinoid-sensitive neuroblastoma cell lines, and then sought to determine the relevance of the target gene responses to the retinoid anticancer signal. The pattern of retinoid responsiveness for six of 13 target genes (RARβ2, CYP26A1, CRBP1, RGS16, DUSP6, EGR1) correlated with phenotypic retinoid sensitivity, across a panel of retinoid-sensitive or -resistant lung and breast cancer cell lines. Retinoid treatment of MYCN transgenic mice bearing neuroblastoma altered the expression of five of nine target genes examined (RARβ2, CYP26A1, CRBP1, DUSP6, PLAT) in neuroblastoma tumour tissue in vivo. In retinoid-sensitive neuroblastoma, lung and breast cancer cell lines, direct inhibition of retinoid-induced RARβ2 expression blocked induction of only one of eight retinoid target genes (CYP26A1). DNA demethylation, histone acetylation, and exogenous overexpression of RARβ2 partially restored retinoid-responsive CYP26A1 expression in RA-resistant MDA-MB-231 breast, but not SK-MES-1 lung, cancer cells. Combined, rather than individual, inhibition of DUSP6 and RGS16 was required to block retinoid-induced growth inhibition in neuroblastoma cells, through phosphorylation of extracellular-signal-regulated kinase. In conclusion, sensitivity to the retinoid anticancer signal is determined in part by the transcriptional response of key retinoid-regulated target genes, such as RARβ2, DUSP6, and RGS16

    The potential role of thioredoxin 1 and CD30 systems as multiple pathway targets and biomarkers in tumor therapy

    Get PDF
    Our progress in understanding pathological disease mechanisms has led to the identification of biomarkers that have had a considerable impact on clinical practice. It is hoped that the move from generalized to stratified approaches, with the grouping of patients into clinical/therapeutic subgroups according to specific biomarkers, will lead to increasingly more effective clinical treatments in the near future. This success depends on the identification of biomarkers that reflect disease evolution and can be used to predict disease state and therapy response, or represent themselves a target for treatment. Biomarkers can be identified by studying relationships between serum, tissue, or tumor microenvironment parameters and clinical or therapeutic parameters at onset and during the progression of the disease, using systems biology. Given that multiple pathways, such as those responsible for redox and immune regulation, are deregulated or altered in tumors, the future of tumor therapy could lie in the simultaneous targeting of these pathways using extracellular and intracellular targets and biomarkers. With this aim in mind, we evaluated the role of thioredoxin 1, a key redox regulator, and CD30, a cell membrane receptor, in immune regulation. Our results lead us to suggest that the combined use of these biomarkers provides more detailed information concerning the multiple pathways affected in disease and hence the possibility of more effective treatment

    Deficiency of Thioredoxin Binding Protein-2 (TBP-2) Enhances TGF-β Signaling and Promotes Epithelial to Mesenchymal Transition

    Get PDF
    Transforming growth factor beta (TGF-β) has critical roles in regulating cell growth, differentiation, apoptosis, invasion and epithelial-mesenchymal transition (EMT) of various cancer cells. TGF-β-induced EMT is an important step during carcinoma progression to invasion state. Thioredoxin binding protein-2 (TBP-2, also called Txnip or VDUP1) is downregulated in various types of human cancer, and its deficiency results in the earlier onset of cancer. However, it remains unclear how TBP-2 suppresses the invasion and metastasis of cancer.In this study, we demonstrated that TBP-2 deficiency increases the transcriptional activity in response to TGF-β and also enhances TGF-β-induced Smad2 phosphorylation levels. Knockdown of TBP-2 augmented the TGF-β-responsive expression of Snail and Slug, transcriptional factors related to TGF-β-mediated induction of EMT, and promoted TGF-β-induced spindle-like morphology consistent with the depletion of E-Cadherin in A549 cells.Our results indicate that TBP-2 deficiency enhances TGF-β signaling and promotes TGF-β-induced EMT. The control of TGF-β-induced EMT is critical for the inhibition of the invasion and metastasis. Thus TBP-2, as a novel regulatory molecule of TGF-β signaling, is likely to be a prognostic indicator or a potential therapeutic target for preventing tumor progression

    Histone deacetylase inhibitors: potential targets responsible for their anti-cancer effect

    Get PDF
    The histone deacetylase inhibitors (HDACi) have demonstrated anticancer efficacy across a range of malignancies, most impressively in the hematological cancers. It is uncertain whether this clinical efficacy is attributable predominantly to their ability to induce apoptosis and differentiation in the cancer cell, or to their ability to prime the cell to other pro-death stimuli such as those from the immune system. HDACi-induced apoptosis occurs through altered expression of genes encoding proteins in both intrinsic and extrinsic apoptotic pathways; through effects on the proteasome/aggresome systems; through the production of reactive oxygen species, possibly by directly inducing DNA damage; and through alterations in the tumor microenvironment. In addition HDACi increase the immunogenicity of tumor cells and modulate cytokine signaling and potentially T-cell polarization in ways that may contribute the anti-cancer effect in vivo. Here, we provide an overview of current thinking on the mechanisms of HDACi activity, with attention given to the hematological malignancies as well as scientific observations arising from the clinical trials. We also focus on the immune effects of these agents

    Development and application of innovative partial discharge analysis algorithms using advanced measuring systems

    No full text
    Partial discharges (PD) are universally considered as one of the most important diagnostic indicators for the condition assessment of electrical equipment. The basic characteristics of traditional PD measuring systems are described in the relevant standard IEC 60270. The transition from analogue to digital PD measuring systems has had a significant impact on the possibility to use the measurement for diagnostic purposes and, moreover, has allowed the development of various PD source separation and defect localisation techniques. The proposed paper describes the research and development of advanced partial discharge analysis techniques and algorithms, focusing on the development of a custom ultra wide band measuring system. The adopted digital signal processing algorithms and the measurement results obtained from laboratory tests are presented and discussed

    On The Design of The Robust Neuro-Adaptive Controller for Cable-driven Parallel Robots

    No full text
    In this study, a robust neuro-adaptive controller for cable-driven parallel robots is proposed. The robust neuro-adaptive control system is comprised of a computation controller and a robust controller. The computation controller containing a neural-network-estimator with radial basis function activator is the principal controller and the robust controller is designed to achieve tracking performance. An on-line tuning method is derived to tune the parameters of the neural network for estimating the controlled system dynamic function. To investigate the effectiveness of the robust adaptive control, the design methodology is applied to control a cable-driven parallel robot. Simulation results demonstrate that the proposed robust adaptive control system can achieve favorable tracking performances for the robot.U ovome redu predstavljen je neuro-adaptivni regulator za žično pogonjene paralelne robote. Robusni neuro-adaptivni regulator sastoji se od računalnog regulatora i robusnog regulatora. Računalni regulator koji sadrži estimator s neuronskom mrežom s radijalnom aktivacijskom funkcijom je glavni regulator u "on-line" metoda podešavanja parametara neuronske mreže za estimaciju dinamike sustava upravljanja. Efikasnost sustava adaptivnog, robusnog regulatora testirana je na na žično pogonjenom paralelnom robotu. Simulacijski rezultati pokazuju da se predloženim robusnim i adaptivnim regulatorom mogu dobiti zadovoljavajuće performance prilikom slijeđenja
    corecore