168 research outputs found

    Mutual information--based approach to adaptive homodyne detection of quantum optical states

    Get PDF
    I propose an approach to adaptive homodyne detection of digitally modulated quantum optical pulses in which the phase of the local oscillator is chosen to maximize the average information gain, i.e., the mutual information, at each step of the measurement. I study the properties of this adaptive detection scheme by considering the problem of classical information content of ensembles of coherent states. Using simulations of quantum trajectories and visualizations of corresponding measurement operators, I show that the proposed measurement scheme adapts itself to the features of each ensemble. For all considered ensembles of coherent states, it consistently outperforms heterodyne detection and Wiseman's adaptive scheme for phase measurements [H.M. Wiseman, Phys. Rev. Lett. 75, 4587 (1995)].Comment: Submutted to Phys. Rev.

    Quantum Cryptography without Switching

    Get PDF
    We propose a new coherent state quantum key distribution protocol that eliminates the need to randomly switch between measurement bases. This protocol provides significantly higher secret key rates with increased bandwidths than previous schemes that only make single quadrature measurements. It also offers the further advantage of simplicity compared to all previous protocols which, to date, have relied on switching.Comment: 4 pages, 4 figures, Submitte

    Experimental Demonstration of Post-Selection based Continuous Variable Quantum Key Distribution in the Presence of Gaussian Noise

    Full text link
    In realistic continuous variable quantum key distribution protocols, an eavesdropper may exploit the additional Gaussian noise generated during transmission to mask her presence. We present a theoretical framework for a post-selection based protocol which explicitly takes into account excess Gaussian noise. We derive a quantitative expression of the secret key rates based on the Levitin and Holevo bounds. We experimentally demonstrate that the post-selection based scheme is still secure against both individual and collective Gaussian attacks in the presence of this excess noise.Comment: 4 pages, 4 figure

    Experimental test of modular noise propagation theory for quantum optics

    Get PDF
    We present and test against experiment a general technique that allows modular modeling of noise propagation in quantum optics experiments. Specifically, we consider a multielement frequency-doubling experiment that ultimately produces 1.7 dB/32% (3.0 dB/50% inferred) squeezing at 532 nm. Unlike previous theoretical treatments, we obtain completely analytical expressions for each element of the experiment. This allows intuitive analysis and straightforward experimental modeling. The exact role of driving noise is demonstrated: addition of a narrow linewidth mode cleaning cavity to reduce the driving noise improves the inferred squeezing from 0.75 to 3.0 dB. We find excellent agreement between the modular theory and experiment

    Polarization Squeezing of Continuous Variable Stokes Parameters

    Get PDF
    We report the first direct experimental characterization of continuous variable quantum Stokes parameters. We generate a continuous wave light beam with more than 3 dB of simultaneous squeezing in three of the four Stokes parameters. The polarization squeezed beam is produced by mixing two quadrature squeezed beams on a polarizing beam splitter. Depending on the squeezed quadrature of these two beams the quantum uncertainty volume on the Poincar\'{e} sphere became a `cigar' or `pancake'-like ellipsoid.Comment: 4 pages, 5 figure

    Growth of N-Heterocyclic Carbene Assemblies on Cu(100) and Cu(111): from Single Molecules to Magic-Number Islands

    Get PDF
    N-Heterocyclic carbenes (NHCs) have superior properties as building blocks of self-assembled monolayers (SAMs). Understanding the influence of the substrate in the molecular arrangement is a fundamental step before employing these ligands in technological applications. Herein, we study the molecular arrangement of a model NHC on Cu(100) and Cu(111). While mostly disordered phases appear on Cu(100), on Cu(111) well-defined structures are formed, evolving from magic-number islands to molecular ribbons with coverage. This work presents the first example of magic-number islands formed by NHC assemblies on flat surfaces. Intermolecular interactions, diffusion and commensurability are key factors explaining the observed arrangements. These results shed light on the molecule-substrate interaction and open the possibility of tuning nanopatterned structures based on NHC assemblies

    PROSEDUR PENGEMBANGAN EVALUASI PEMBELAJARAN PENDIDIKAN AGAMA ISLAM

    Get PDF
    Evaluasi pembelajaran pada dasarnya dilakukan untuk menilai hasil belajar peserta didik, sehingga dalam evaluasi dilakukan penilaian atau pengukuran terhadap kemampuan peserta didik. Dalam mengevaluasi ada banyak teknik yang dapat dipilih dan dilakukan oleh guru. Prosedur evaluasi adalah langkah-langkah evaluasi yang harus dilakukan seorang evaluator dalam melakukan evaluasi pembalajaran. Tentu tidak dapat dipungkiri bahwa banyak pandangan berkaitan dengan prosedur kegiatan evaluasi, prosedur yang harus diikuti evaluator meliputi perencanaan evaluasi, monitoring pelaksanaan evaluasi, pelaporan hasil evaluasi, dan pemanfaatan hasil evaluas

    Growth of N-Heterocyclic Carbene Assemblies on Cu(100) and Cu(111): from Single Molecules to Magic-Number Islands

    Get PDF
    N-Heterocyclic carbenes (NHCs) have superior properties as building blocks of self-assembled monolayers (SAMs). Understanding the influence of the substrate in the molecular arrangement is a fundamental step before employing these ligands in technological applications. Herein, we study the molecular arrangement of a model NHC on Cu(100) and Cu(111). While mostly disordered phases appear on Cu(100), on Cu(111) well-defined structures are formed, evolving from magic-number islands to molecular ribbons with coverage. This work presents the first example of magic-number islands formed by NHC assemblies on flat surfaces. Intermolecular interactions, diffusion and commensurability are key factors explaining the observed arrangements. These results shed light on the molecule-substrate interaction and open the possibility of tuning nanopatterned structures based on NHC assemblies

    Optimum Small Optical Beam Displacement Measurement

    Full text link
    We derive the quantum noise limit for the optical beam displacement of a TEM00 mode. Using a multimodal analysis, we show that the conventional split detection scheme for measuring beam displacement is non-optimal with 80% efficiency. We propose a new displacement measurement scheme that is optimal for small beam displacement. This scheme utilises a homodyne detection setup that has a TEM10 mode local oscillator. We show that although the quantum noise limit to displacement measurement can be surpassed using squeezed light in appropriate spatial modes for both schemes, the TEM10 homodyning scheme out-performs split detection for all values of squeezing.Comment: 13 pages, 7 figure

    Report on an all-sky LIGO search for periodic gravitational waves in the S4 data

    Full text link
    We report on an all-sky search with the LIGO detectors for periodic gravitational waves in the frequency range 50-1000 Hz and having a negative frequency time derivative with magnitude between zero and 10−810^{-8} Hz/s. Data from the fourth LIGO science run have been used in this search. Three different semi-coherent methods of summing strain power were applied. Observing no evidence for periodic gravitational radiation, we report upper limits on strain amplitude and interpret these limits to constrain radiation from rotating neutron stars.Comment: 5 pages, 1 figure, presented at Amaldi7, Sydney (July 2007
    • …
    corecore