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We present and test against experiment a general technique that allows modular modeling of noise propa-
gation in quantum optics experiments. Specifically, we consider a multielement frequency-doubling experi-
ment that ultimately produces 1.7 dB/32%~3.0 dB/50% inferred! squeezing at 532 nm. Unlike previous
theoretical treatments, we obtain completely analytical expressions for each element of the experiment. This
allows intuitive analysis and straightforward experimental modeling. The exact role of driving noise is dem-
onstrated: addition of a narrow linewidth mode cleaning cavity to reduce the driving noise improves the
inferred squeezing from 0.75 to 3.0 dB. We find excellent agreement between the modular theory and experi-
ment.@S1050-2947~96!07909-7#

PACS number~s!: 42.50.Lc, 42.50.Dv, 42.79.Nv, 03.65.Sq

A critical but often overlooked characteristic of quantum
optics experiments is their sensitivity to source noise and its
effect throughout the experiment. This has implications both
for practical applications, where source noise is endemic, and
for modeling, which most often assumes a coherent, and thus
quantum noise limited at all frequencies, source.

The best known example of a system insensitive to source
noise is the squeezed vacuum produced by optical parametric
oscillation. By assuming the source is a coherent state, ex-
cellent agreement has been obtained between theory and ex-
periment@1#. This is not the case for bright squeezing pro-
duced by processes such as Kerr interactions, rate matched
lasers, or second-harmonic generation. In such processes the
statistics of the source beam carry over to the output beam. If
the source beam is modeled as a coherent state for experi-
ments where the source has intrinsic excess noise, the agree-
ment between theory and experiment is quite poor@2,3#.

The development of the cascaded quantum formalism@4#
allowed the noise characteristics of the source to be fully
modeled and propagated via a master equation approach. To
date the formalism has only been explicitly tested for the
case of squeezed light produced by second-harmonic genera-
tion @5#. As Fig. 1~a! shows, the system was modeled as a
second-harmonic generator driven by a solid-state laser,
which in turn was pumped by a coherent state. Unfortunately
the cascaded formalism does not lend itself to analytical so-
lutions, making physical interpretation of the theory difficult
@6#.

In this paper we present both a more elegant and complete
approach and improved experimental results. The spectrum
of the source, and of each subsequent element in the system,
is described by completely analytical expressions, allowing
both intuitive physical analysis and straightforward experi-
mental modeling. In effect the system can be decomposed
into modules, with spectra for each module being derived
using the well-known technique of linearized fluctuation
analysis for the equations of motion of that element@7#. The
approach is general, and will predict noise spectra for any
quadrature of any optical system that can be linearized. In

this paper we rigorously test this approach by examining the
effect of driving noise upon amplitude quadrature squeezed
light produced by second-harmonic generation.

The conceptual layout of the experiment is shown in Fig.
1~b!. The second-harmonic generator is driven by a laser of
frequencyn1 and produces amplitude quadrature squeezed
light of frequency 2n1. The driving laser, which is in turn
pumped by a diode laser, has intrinsic amplitude noise,
which masks the squeezing at low frequencies@5,6#. To im-
prove the squeezing, the laser can be passed through a nar-
row linewidth mode cleaning cavity, which reduces the line-
width of the amplitude noise. The full derivation of the laser
spectrum is presented in Ref.@8#; the second-harmonic spec-
trum is a variation on the spectrum presented in Ref.@2#.
Accordingly we do not repeat the derivations here, although
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FIG. 1. Conceptual layout.~a! is the system of Ref.@5#. A
second-harmonic generator~SHG! is driven by a coherently
pumped laser of frequencyn1 and produces amplitude quadrature
squeezed light of frequency 2n1. Predictions are obtained via nu-
merical calculation of large matrices.~b! is the system presented in
this paper. To accurately reflect the experimental situation the solid-
state laser is modeled with a noisy diode laser pump. The solid-state
laser has intrinsic amplitude noise, which masks the squeezing at
low frequencies: to improve the squeezing, the laser can be passed
through a narrow linewidth mode cleaning cavity, which reduces
the linewidth of the amplitude noise. Analytical spectra are pre-
sented for each stage of the experiment.
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we will give a brief outline of the process.
To model the noise of each element in the experiment, the

quantum-mechanical equations of motion for that element
are derived, including zero-point fluctuation terms~e.g., for
the laser, the terms are for the pump, dipole, spontaneous
emission, and cavity loss!. The equations of motion are then
linearized with respect to fluctuations, transformed to the fre-
quency domain, and solved simultaneously to give the noise
properties of the cavity modea. An analytical expression
V for the spectrum of the output fieldA is then found in
terms of the modea using the input-output formalism@9#.
Explicit predictions can be made by solving the equation~s!

of motion ~by setting the time derivatives to zero! and sub-
stituting the subsequent semiclassical value~s! into the ex-
pression forV ~e.g., for the laser, these are the values of the
laser mode and populations.!

The second-harmonic generator in this experiment is sin-
gly resonant, i.e., resonant at the fundamental frequency
n1. Accordingly we use the explicit singly resonant equation
of motion @2# ~as opposed to taking the limit of the doubly
resonant case, cf.@6#!. As we are only considering the reso-
nant case all detunings are set to zero. Using Eq.~1a! we
obtain the output amplitude quadrature noise spectrum of the
second-harmonic,VSHG

out :

ȧSHG52kSHGaSHG2muaSHGu2aSHG1A2kshg1ASHG, ~1a!

VSHG
out 5

~muaSHGu22kSHG!21v218kSHG1muaSHGu2VSHG
in 18kshg2muaSHGu2

~3muaSHGu21kSHG!21v2 , ~1b!

wherem is the nonlinearity; the termmuaSHGu2 is the two photon damping rate, representing the nonlinear loss from the
fundamental to the second-harmonic;kSHG is the total linear decay rate for the fundamental cavity;kSHG1 is the decay rate of
the coupling mirror;kSHG2 is the decay rate due to absorptive loss and any other cavity mirrors;ASHG is the driving rate;
aSHG is the semiclassical value of the fundamental mode;v52p f , where f is the detection frequency; andVSHG

in is the
amplitude quadrature spectrum of the pump field. For coherent driving noise (VSHG

in 51), we obtain the results of Ref. 2:
optimum squeezing occurs at zero frequency, and has a maximum value of 1/9 in the limitmuaSHGu2..kSHG. If VSHG

in is
noisy at a given frequency then the noise will mask the squeezing at that frequency, reducing its maximum value.

The mode cleaner is a way of reducing the driving noise of the second-harmonic generator,VSHG
in . As shown in Fig. 2 the

mode cleaner is a three mirror cavity with plane input and output mirrors and a curved high reflectance mirror. The equation
of motion and the amplitude quadrature spectrum of the output field are straightforwardly written as

ȧmc52kmcamc1A2kmc1Amc, ~2a!

Vmc
out5

~2kmc22kmc!
21v214 kmc1kmc2Vmc

in 14 kmc2kmc

kmc
2 1v2 ~2b!

wherekmc1 andkmc2 are the decay rates for the input and output mirrors, respectively;kmc, is the total cavity decay rate,
including that of the third mirror;Amc is the driving rate of the cavity;amc is the semiclassical value of the mode cleaner mode;
andVmc

in is the amplitude quadrature spectrum of the input field. At low frequencies the output spectrum is dominated by any
noise due toVmc

in . As frequency increases beyond the valuekmc the v2 terms of both numerator and denominator become
dominant, ensuring that the output becomes quantum noise limited outside the cavity linewidth. Obviously we wish to ensure
thatkmc is low enough so that significant noise attenuation of the input field occurs in the frequency regime of interest.

The laser is modeled as a three-level system, using the equations of motion of Ref.@8#. Rather than list these here, we
present the following solutions:

a5AJ2~g2g t!

2k
2

g t

G
, J25

~122k/G!

~g/G12!
, J15

gJ2
G

,

J35J21
2k

G
. ~3a!

The amplitude quadrature output spectrum,Vlas
out is

Vlas511$~2k las1!
2@v21~Ga las

2 1g t1G!2#28k las1k lasGa las
2 ~Ga las

2 1g t1G!12k las1G
2a las

2 ~GJ1V las
in 1g tJ3!12k las1G@~g t

1G!21v2#~J31J2!14k las1k las2@~Ga las
2 1g t1G!21v2#%3$~2Ga las

2 k las2v2!21v2~Ga las
2 1g t1G!2%21, ~3b!
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whereG is the stimulated emission rate,G5ssrc8; ss is the
stimulated emission cross section for the Nd:YAG; laserr is
the density of Nd atoms in the laser medium;c8 is the speed
of light in the laser medium;g t andg are the spontaneous
emission rates from levelsu3& to u2&, andu2& to u1&, respec-
tively; G is the rate of incoherent pumping of the lasing
transition;k las1 and k las2 are the cavity decay rates for the
output mirror and all other losses, respectively;k las 5 k las1
1 k las2 is the total cavity decay rate;a las and Ji are the
semiclassical solutions for the laser mode and populations,
respectively;v is the detection frequency; andVlas

in is the
amplitude quadrature spectrum of the diode laser pump field.

As can be seen from the denominator of Eq.~3b! there is
a resonance in the spectrum at the frequency
v252Ga las

2 k las1. A strong oscillation, known as the reso-
nant relaxation oscillation~RRO! @10#, is apparent at this
frequency if the resonance is underdamped@2Ga las

2 k las1

.(Ga las
2 1g t1G)2#. The RRO can be considered as an os-

cillation between photons stored in the lasing medium and
photons stored in the cavity mode. Below the RRO fre-
quency the spectrum is dominated by pump noise of the
diode laser and quantum noise from the spontaneous emis-
sion and phase decay of the coherence. Above the RRO fre-
quency these noises roll off due to the filtering effect of the
lasing cavity, so that at high frequencies the laser approaches
the quantum noise limit. It is the tail of the large noise fea-

ture due to the RRO that we wish to attenuate with the mode
cleaning cavity.

The three equations~1b!, ~2b!, and ~3b! are straightfor-
wardly combined to give the output squeezing spectrum of
the full system. Compare this to the standard technique
@11,5#, which in general requires laborious numerical clacu-
lations. Furthermore, modeling removal of the mode cleaner
is trivial: the termVmc

out @in the positionVSHG
in of Eq. ~1b!# is

replaced byVlas
out.

The experimental layout is shown in Fig. 2. The laser is a
diode pumped Nd:YAG monolithic ring laser~Lightwave
122! that produces a single mode of wavelength 1064 nm.
The mode cleaner is a three mirror ring cavity with a perim-
eter of 2.5 m. A ring cavity was chosen to allow easy access
to the reflected beam, which provides the locking signal in a
Pound-Drever configuration. The necessary phase modula-
tion is achieved by modulating the fast frequency control
port of the laser@12# at a frequency of 27.650 MHz. Low-
frequency locking is achieved by feeding the resultant error
signal to the piezo on the third mirror. Due to the narrow
linewidth of the mode cleaner, this alone is inadequate for
locking: high-frequency (.500 kHz! locking is effected by
filtering the error signal, combining it with the 27.650-MHz
modulation, and feeding it to the fast control of the laser.

The normal application of mode cleaning cavities in quan-
tum optics requires very narrow linewidths and output pow-

FIG. 2. Full experimental layout. The light source is a Nd:YAG monolithic ring laser~Lightwave 122! producing 200 mW of linearly
polarized light at 1064 nm. The output of the laser is passed through a variable attenuator@a half-wave plate (l/2! and polarizing beam
splitter assembly# and is then incident on a three mirror, mode cleaning, ring cavity of linewidth 800 kHz. Locking of the mode cleaner is
effected using a 27.650-MHz frequency modulation applied directly to the laser, and an error signal derived from the reflected light from the
input mirror of the mode cleaner. At low frequencies,,500 Hz, the mode cleaner cavity length is made to track the laser frequency via a
piezo on the end mirror, while at high frequencies,.500 Hz, the laser frequency is made to track the mode cleaner. The output of the mode
cleaner is slightly elliptically polarized, this is corrected back to linear polarization using a zero-order quarter wave plate (l/2!. The light
then passes through a Faraday isolator: this prevents light from returning to the laser, and allows easy access to the retroreflected beam. The
light is then incident on the frequency-doubling cavity. Locking of the monolithic cavity is effected by placing a 45.167-MHz frequency
modulation directly across thexy faces of the MgO:LiNbO3 doubling cavity. The error signal is derived from the reflected beam and is used
to lock the laser at both low (,500 Hz! and high frequencies to the mode of the monolith. The output second-harmonic at 532 nm is
separated from the 1064-nm pump via two dichroic beam splitters. It is incident on two angled FND-100 photodetectors with retroreflectors,
giving a quantum efficiency of 65%65%. The outputs are added and subtracted and sent to the spectrum analyzer. BS denotes beam splitter;
PBS polarizing beam splitter; PID, proportional integrator differentiator;A amplifier; l/2, zero-order half-wave plate;l/4, zero-order
quarter-wave plate.
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ers of only a few mW@13#. This is achieved by designing for
as high a finesse as possible, using high-reflectance coupling
mirrors and lengthy perimeters. A constraint of our applica-
tion is the requirement for the transmission of high powers,
in excess of 100 mW. This limits the finesse, as the intrac-
avity powers rapidly approach the damage threshold of com-
mercially available mirrors. Accordingly we settled on input
and output couplers of reflectivity 98%, and reflectivity of
99.9% for the third mirror. The cavity thus has a linewidth of
800 kHz and transmits 60% of the incident power, which is
adequate for this experiment.

The decay rate for a mirror is related to the mirror reflec-
tivity by the relation

k.
c~12AR!

np
, ~4!

where c is the speed of lightin vacuo ; p is the cavity
perimeter;n is the refractive index in the cavity; andR is the
reflectivity of the mirror. The relationship between the driv-
ing rate of a cavityA and the power of the driving fieldP is
P5hnA2, whereh is Planck’s constant.

The values of the laser parameters for Nd:YAG are
ss56.5310223m2; r51.3831026atoms. m23; c851.640
3108m s21; g t54.33103 s21; g53.33107s21 @14#, thus
G51.471012 s21. Our laser has a geometric perimeter ofp
5 28.5 mm, an input coupler of reflectivityR 5 96.8%, and
internal round trip losses of 1.6%. Thus
k las159.283107 s21 andk las51.393108 s21. G is the only
fit parameter required; its value is determined by fitting the
frequency of the predicted RRO to that of the experimental
observed RRO. For our laser we findG58.703 s21. The
diode laser arrays used to pump the Nd:YAG laser suffer
large, very broadband, amplitude noise. We model the diode

laser spectrum as white noise 52 dB above shot noise, i.e.,
Vlas
in .160 000. This is consistent with the directly measured

noise power for diode arrays.
Light-wave lasers have a switchable internal noise eater,

i.e., an optoelectronic feedback circuit that reduces the peak
noise power of the RRO. Unfortunately the noise eater in-
creases the noise in the tail of the RRO, in the frequency
regime that we seek to quieten. Accordingly all data in this
paper have been taken with the noise eater turned off. Figure
3 shows, at the same optical power, the output spectra of the
laser and mode cleaner and the predictions from Eqs.~3b!
and~2b!. We note two things. Firstly, the agreement between
theory and experiment is excellent. Secondly, the noise fil-
tering action of the mode cleaner is very clear. At these
powers the laser is not quantum noise limited (,0.25 dB!
until beyond 45 MHz, whereas the mode cleaner output is
quantum noise limited from 7 MHz onwards.

The second-harmonic generator is a standing-wave mono-
lithic cavity fabricated from MgO:LiNbO3 with dimensions
of 5(x)312.5(y)35(z) mm, where (z) is the optic axis.
The cavity ends have radii of curvature of 14.24 mm~the
waist is thus 32.8mm!. The front and back ends are coated
with dual wavelength dielectric mirror coatings: 99.60%6
0.03% at 1064 nm and; 4% at 532 nm for the front coating;
99.90%6 0.03% at 1064 nm and 99.9% at 532 nm for the
back coating. The internal round-trip losses are estimated to
be 0.1060.02% cm21 and the nonlinearity is inferred to be
m50.012 s21. Thexy faces of the crystal are gold coated to
allow electro-optic modulation of the cavity. The cavity is
electrically insulated inside a Teflon case that is resident in a
copper oven that is temperature locked to a stability of 1 mK.
The cavity is electro-optically modulated at 45.167 MHz to

FIG. 3. A comparison of the mode cleaner and laser output
spectra for power incident on the infrared balanced detector of 14
mW. The experimental traces have been corrected for electronic
noise. The upper traces~a! and~b! are, respectively, the experimen-
tal and theoretical traces for the output spectrum of the laser~with
the noise eater turned off!. The lower traces~c! and ~d! are the
equivalent for the mode cleaner output spectrum. The noise filtering
action of the mode cleaner is very clear. While the laser is not
quantum noise limited until beyond 45 MHz, the output of the mode
cleaner is quantum noise limited beyond 7 MHz. The large peak at
27.6 MHz is the modulation signal for the locking of the mode
cleaner.

FIG. 4. Squeezing spectra of the second-harmonic. The mode
matched power of the fundamental was 81 mW, the second-
harmonic power was 34 mW. The experimental traces have been
corrected for electronic noise. Trace~a! and trace~c! are the spectra
obtained for the experiment run without and with the mode cleaner,
respectively. The maximum squeezing and detection frequency of
occurrence in each case are: trace~a!, 0.47 dB~0.75 dB inferred! at
23 MHz; trace~c!, 1.7 dB ~3.0 dB inferred! at 7.5 MHz. The sub-
shot noise noise feature at 10 MHz on trace~c! is residual noise
from the locking systems of the mode cleaner and the second-
harmonic generator. Traces~b! and ~d! are the theoretical plots
corresponding to the experimental traces. Trace~e! is the theoretical
prediction for the squeezing if there were no extra noise present at
all, i.e., the driving field was coherent.
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produce a Pound-Drever error signal that is detected on the
reflected beam accessed by the Faraday isolator. As the laser
is locked to both the second-harmonic generator and the
mode cleaner considerable care must be taken to ensure that
there is no conflict between the locking loops. Significantly
lower bandwidth mode cleaners than that used here would
give only a relatively small increase in squeezing and would
be much more difficult to lock: an extra degree of freedom
would be required, possibly by using a hemilithic~one mir-
ror external to the crystal! frequency-doubling cavity.

The second-harmonic generator produces squeezed light
at 532 nm, which is picked off with a dichroic and detected
via a self-homodyne detector. In general the quantum effi-
ciency of available photodetectors is lower in the green than
in the infrared. To maximize quantum efficiency, the photo-
detectors~EG&G FND-100! have the external glass re-
moved, are turned to the Brewster angle, and the reflected
light is directed back onto the detector via a curved retrore-
flector. These measures push the quantum efficiency of each
detector to 65%65%.

The second-harmonic generator was pumped with a
mode-matched power of 81 mW, producing 34 mW of
second-harmonic light. Higher pump powers than this cause
the onset of parasitic parametric oscillation, which degrades
the squeezing@15#. Figure 4 clearly shows the effect of driv-
ing noise on the squeezing of the second-harmonic. Traces
~a! and ~c! are the experimental spectra from the second-
harmonic generator, respectively, without and with the mode
cleaner. Traces~b! and ~d! are the corresponding theoretical
predictions. Again, the agreement between theory and ex-
periment is excellent. Trace~e! is the theoretical prediction
for a coherent pump. Comparison of trace~e! with traces~a!
and ~c! clearly demonstrates the role of the mode cleaner in
attenuating the driving noise. The maximum squeezing is
improved from 0.47 dB~0.75 dB inferred! at 23 MHz to 1.6
dB ~3.0 dB inferred! at 7.5 MHz, and the spectrum above 11
MHz is that predicted for the ideal case with no excess pump
noise. The subshot noise feature at.10 MHz is residual
noise from the locking system~cf. Fig. 3!.

The squeezing measurement is a sensitive test of our
model. For example, the diode lasers that pump the solid-
state laser have considerable excess noise~52 dB above the
quantum noise limit!. Despite this, excellent agreement was
obtained between theory and experiment, both without the
mode cleaner and in Ref. 5, by modeling the diode laser
noise as quantum noise limited. This is no longer true for the
mode cleaner case, where there is a greater degree of squeez-
ing. The approximation that the diode laser pump is quantum
noise limited gives poor agreement between theory and ex-
periment: it is necessary to include the correct amount of
excess classical noise.

To reiterate our earlier point: the only changes to the
model between producing traces~b! and ~d! was the inclu-
sion of the mode cleaner@Eq. ~2b!# at the appropriate place
in Eq. ~1b!, and an adjustment of the parameter representing
the optical power reaching the monolith. All other param-
eters remain fixed. The excellent agreement between theory
and experiment, and the inclusion of the mode cleaner,
which led to the large observed improvement in squeezing
~from 0.75 to 3.0 dB, inferred!, suggests a significant im-
provement is possible in the system of Ref.@3#. The modular
approach can be applied to any experiment where transfer of
source noise is significant, notably injection locked laser sys-
tems@8# and holds great potential for modeling complicated
multielement experiments, such as gravity wave interferom-
eters.

Note added in proof:Recently, we constructed photode-
tectors with a quantum efficiency of 91% at 532~nm!, ca-
pable of handling up to 20 mW per detector. For squeezing
of 2.6 dB we have observed 2.1 dB experimentally~without
correcting for electronic noise!.

The authors wish to acknowledge useful discussions with
Charles C. Harb. The crystal was cut and polished by
CSIRO, Sydney, Australia. The mirror coatings were pro-
duced by LZH, Hannover, Germany. This work was sup-
ported by the Australian Research Council.

@1# E. S. Polzik, J. C. Carri, and H. J. Kimble, Phys. Rev. Lett.68
3020 ~1992!.

@2# R. Paschotta, M. Collett, P. Ku¨rz, K. Fiedler, H.-A. Bachor,
and J. Mlynek, Phys. Rev. Lett.72, 3807~1994!.

@3# H. Tsuchida, Opt. Lett.20, 2240~1995!.
@4# C. W. Gardiner, Phys. Rev. Lett.70 2269 ~1993!; H. J. Car-

michael,ibid. 70, 2273~1993!.
@5# T. C. Ralph, M. S. Taubman, A. G. White, D. E. McClelland,

and H.-A. Bachor, Opt. Lett.20, 1316~1995!.
@6# A. G. White, T. C. Ralph, and H.-A. Bachor, J. Opt. Soc. Am.

B 31, 1337~1996!.
@7# See, for examples C. W. Gardiner,Quantum Noise~Springer-

Verlag, Berlin, 1991!; L. Hilico, J. M. Courty, C. Fabre, E.
Giacobino, I. Abram, and J. L. Oudar, Appl. Phys. B55, 202
~1992!.

@8# T. C. Ralph, C. C. Harb, and H.-A. Bachor, Phys. Rev. A~to
be published!.

@9# C. W. Gardiner and M. J. Collett, Phys. Rev. A31 3761
~1985!.

@10# For example, see A. Yariv,Quantum Electronics~John Wiley,
Singapore, 1989!.

@11# D. F. Walls and G. J. Milburn,Quantum Optics~Springer-
Verlag, New York, 1994!.

@12# G. Cantatore, F. Della Valle, E. Milotti, P. Pace, E. Zavattini,
E. Polacco, F. Perrone, C. Rizzo, G. Zavattini, and G. Ruoso,
Rev. Sci. Instrum.66, 2785~1995!.

@13# G. Breitenbach, T. Muller, S. F. Pereira, J.-Ph. Poizat. S.
Schiller, and J. Mlynek, J. Opt. Soc. Am. B12, 2304~1995!.

@14# W. Koechner,Solid State Laser Engineering~Springer-Verlag,
Berlin, 1988!.

@15# A. G. White, P. K. Lam, M. S. Taubman, T. C. Ralph, S.
Schiller, D. E. McClelland, and H.-A. Bachor, in Proceedings
of the Centre de Physique des Houchesx~2! Workshop @J.
Quantum Semiclass. Opt.~to be published!#.

3404 54ANDREW G. WHITE et al.


