2,029 research outputs found

    Non-perturbative model for the half-off-shell \gamma N N vertex

    Full text link
    Form factors in the nucleon-photon vertex with one off-shell nucleon are calculated by dressing the vertex with pion loops up to infinite order. Cutting rules and dispersion relations are implemented in the model. Using the prescription of minimal substitution we construct a \gamma \pi N N vertex and show that it has to be included in the model in order that the Ward-Takahashi identity for the \gamma N N vertex be fulfilled. The vertex is to be applied in a coupled-channel K-matrix formalism for Compton scattering, pion photoproduction and pion scattering. The form factors show a pronounced cusp structure at the pion threshold. As an illustration of a consistent application of the model, we calculate the cross section of Compton scattering. To provide gauge invariance in Compton scattering, a four-point \gamma \gamma N N contact term is constructed using minimal substitution.Comment: 51 pages, 12 Postscript figures, using REVTeX. Submitted to Phys. Rev. C, added reference

    On electromagnetic off-shell effects in proton-proton bremsstrahlung

    Get PDF
    We study the influence of the off-shell structure of the nucleon electromagnetic vertex on proton-proton bremsstrahlung observables. Realistic choices for these off-shell effects are found to have considerable influences on observables such as cross sections and analyzing powers. The rescattering contribution diminishes the effects of off-shell modifications in negative-energy states.Comment: 7 pages, 3 figure

    Density resummation of perturbation series in a pion gas to leading order in chiral perturbation theory

    Full text link
    The mean field (MF) approximation for the pion matter, being equivalent to the leading ChPT order, involves no dynamical loops and, if self-consistent, produces finite renormalizations only. The weight factor of the Haar measure of the pion fields, entering the path integral, generates an effective Lagrangian δLH\delta \mathcal{L}_{H} which is generally singular in the continuum limit. There exists one parameterization of the pion fields only, for which the weight factor is equal to unity and δLH=0\delta \mathcal{L}_{H}=0, respectively. This unique parameterization ensures selfconsistency of the MF approximation. We use it to calculate thermal Green functions of the pion gas in the MF approximation as a power series over the temperature. The Borel transforms of thermal averages of a function J(χαχα)\mathcal{J}(\chi ^{\alpha}\chi ^{\alpha}) of the pion fields χα\chi ^{\alpha} with respect to the scalar pion density are found to be 2πJ(4t)\frac{2}{\sqrt{\pi}}\mathcal{J}(4t). The perturbation series over the scalar pion density for basic characteristics of the pion matter such as the pion propagator, the pion optical potential, the scalar quark condensate , the in-medium pion decay constant F~{\tilde{F}}, and the equation of state of pion matter appear to be asymptotic ones. These series are summed up using the contour-improved Borel resummation method. The quark scalar condensate decreases smoothly until Tmax310T_{max}\simeq 310 MeV. The temperature TmaxT_{max} is the maximum temperature admissible for thermalized non-linear sigma model at zero pion chemical potentials. The estimate of TmaxT_{max} is above the chemical freeze-out temperature T170T\simeq 170 MeV at RHIC and above the phase transition to two-flavor quark matter Tc175T_{c} \simeq 175 MeV, predicted by lattice gauge theories.Comment: Replaced with revised and extended version. Results are compared to lattice gauge theories. 16 pages REVTeX, 13 eps figure

    The Adler-Weisberger and Goldberger-Miyazawa-Oehme sum rules as probes of constraints from analyticity and chiral symmetry in dynamical models for pion-nucleon scattering

    Full text link
    The Adler-Weisberger and Goldberger-Miyazawa-Oehme sum rules are calculated within a relativistic, unitary and crossing symmetric dynamical model for pion-nucleon scattering using two different methods: 1) by evaluating the scattering amplitude at the corresponding low-energy kinematics and 2) by evaluating the sum-rule integrals with the calculated total cross section. The discrepancy between the results of the two methods provides a measure of the breaking of analyticity and chiral symmetry in the model. The contribution of the Δ\Delta resonance, including its dressing with meson loops, is discussed in some detail and found to be small.Comment: 12 pages, 6 figures, using RevTEX4. References added, discussion extended, conclusions unchanged. To be published in Nuclear Physics

    Contribution of spin 1/2 and 3/2 resonances to two-photon exchange effects in elastic electron-proton scattering

    Get PDF
    We calculate contributions of hadron resonances to two-photon exchange effects in electron-proton scattering. In addition to the nucleon and P33 resonance, the following heavier resonances are included as intermediate states in the two-photon exchange diagrams: D13, D33, P11, S11 and S31. We show that the corrections due to the heavier resonances are smaller that the dominant nucleon and P33 contributions. We also find that there is a partial cancellation between the contributions from the spin 1/2 and spin 3/2 resonances, which results in a further suppression of their aggregate two-photon exchange effect.Comment: 6 pages, 1 figure; additional comparison with data, results unchanged; to be published in Phys. Rev.

    Low-energy Compton scattering on the nucleon and sum rules

    Get PDF
    The Gerasimov-Drell-Hearn and Baldin-Lapidus sum rules are evaluated in the dressed K-matrix model for photon-induced reactions on the nucleon. For the first time the sum α+β\alpha+\beta of the electric and magnetic polarisabilities and the forward spin polarisability γ0\gamma_0 are explicitly calculated in two alternative ways -- from the sum rules and from the low-energy expansion of the real Compton scattering amplitude -- within the {\em same} framework. The two methods yield compatible values for α+β\alpha+\beta but differ somewhat for γ0\gamma_0. Consistency between the two ways of determining the polarisabilities is a measure of the extent to which basic symmetries of the model are obeyed.Comment: 9 pages, 4 figures, using REVTeX. More concise version, results unchanged. To appear in Phys. Rev.

    Medium effects in the production and decay of vector mesons in pion-nucleus reactions

    Get PDF
    The ω\omega-, ρ\rho- and ϕ\phi-resonance production and their dileptonic decay in πA\pi^- A reactions at 1.1 - 1.7 GeV/c are calculated within the intranuclear cascade (INC) approach. The invariant mass distribution of the dilepton pair for each resonance can be decomposed in two components which correspond to their decay 'inside' the target nucleus and in the vacuum, respectively. The first components are strongly distorted by the nuclear medium due to resonance-nucleon scattering and a possible mass shift at finite baryon density. These medium modifications are compared to background sources in the dilepton spectrum from πN\pi N bremsstrahlung as well as the Dalitz decays of ω\omega and η\eta mesons produced in the reaction. Detailed predictions for πPb\pi^- Pb reactions at 1.3 and 1.7 GeV/c are made within several momentum bins for the lepton pair.Comment: 29 pages, LaTeX, including 12 postscript figures, UGI-97-07, Nucl. Phys. A., in pres
    corecore