2,988 research outputs found

    Wave Functions and Energy Terms of the SCHR\"Odinger Equation with Two-Center Coulomb Plus Harmonic Oscillator Potential

    Full text link
    Schr\"odinger equation for two center Coulomb plus harmonic oscillator potential is solved by the method of ethalon equation at large intercenter separations. Asymptotical expansions for energy term and wave function are obtained in the analytical form.Comment: 4 pages, no figures, LaTeX, submitted to PR

    Self-inhibiting thermal conduction in high-beta, whistler-unstable plasma

    Full text link
    A heat flux in a high-β\beta plasma with low collisionality triggers the whistler instability. Quasilinear theory predicts saturation of the instability in a marginal state characterized by a heat flux that is fully controlled by electron scattering off magnetic perturbations. This marginal heat flux does not depend on the temperature gradient and scales as 1/β1/\beta. We confirm this theoretical prediction by performing numerical particle-in-cell simulations of the instability. We further calculate the saturation level of magnetic perturbations and the electron scattering rate as functions of β\beta and the temperature gradient to identify the saturation mechanism as quasilinear. Suppression of the heat flux is caused by oblique whistlers with magnetic-energy density distributed over a wide range of propagation angles. This result can be applied to high-β\beta astrophysical plasmas, such as the intracluster medium, where thermal conduction at sharp temperature gradients along magnetic-field lines can be significantly suppressed. We provide a convenient expression for the amount of suppression of the heat flux relative to the classical Spitzer value as a function of the temperature gradient and β\beta. For a turbulent plasma, the additional independent suppression by the mirror instability is capable of producing large total suppression factors (several tens in galaxy clusters) in regions with strong temperature gradients.Comment: accepted to JP

    Polarization of Sunyaev-Zeldovich signal due to electron pressure anisotropy in galaxy clusters

    Full text link
    We describe polarization of the Sunyaev-Zel'dovich (SZ) effect associated with electron pressure anisotropy likely present in the intracluster medium (ICM). The ICM is an astrophysical example of a weakly collisional plasma where the Larmor frequencies of charged particles greatly exceed their collision frequencies. This permits formation of pressure anisotropies, driven by evolving magnetic fields via adiabatic invariance, or by heat fluxes. SZ polarization arises in the process of Compton scattering of the cosmic microwave background (CMB) photons off the thermal ICM electrons due to the difference in the characteristic thermal velocities of the electrons along two mutually orthogonal directions in the sky plane. The signal scales linearly with the optical depth of the region containing large-scale correlated anisotropy, and with the degree of anisotropy itself. It has the same spectral dependence as the polarization induced by cluster motion with respect to the CMB frame (kinematic SZ effect polarization), but can be distinguished by its spatial pattern. { For the illustrative case of a galaxy cluster with a cold front, where electron transport is mediated by Coulomb collisions, we estimate the CMB polarization degree at the level of 108^{-8} (10\sim 10 nK). An increase of the effective electron collisionality due to plasma instabilities will reduce the effect. Such polarization, therefore, may be an independent probe of the electron collisionality in the ICM, which is one of the key properties of a high-β\beta weakly collisional plasma from the point of view of both astrophysics and plasma theory.Comment: 13 pages, 5 figures, accepted for publication in MNRA

    The Uniform Commercial Code: A Russian Point of View

    Get PDF

    Relativistic dynamical polarizability of hydrogen-like atoms

    Full text link
    Using the operator representation of the Dirac Coulomb Green function the analytical method in perturbation theory is employed in obtaining solutions of the Dirac equation for a hydrogen-like atom in a time-dependent electric field. The relativistic dynamical polarizability of hydrogen-like atoms is calculated and analysed.Comment: 15 pages, 3 figures (not included, but hard copies are available upon request

    Spectra of Doubly Heavy Quark Baryons

    Get PDF
    Baryons containing two heavy quarks are treated in the Born-Oppenheimer approximation. Schr\"odinger equation for two center Coulomb plus harmonic oscillator potential is solved by the method of ethalon equation at large intercenter separations. Asymptotical expansions for energy term and wave function are obtained in the analytical form. Using those formulas, the energy spectra of doubly heavy baryons with various quark compositions are calculated analytically.Comment: 19 pages, latex2e, published at PRC61(2000)04520

    Relativistic effects in proton-induced deuteron break-up at intermediate energies with forward emission of a fast proton pair

    Get PDF
    Recent data on the reaction pD -> (pp) n with a fast forward pp pair with very small excitation energy is analyzed within a covariant approach based on the Bethe-Salpeter formalism. It is demonstrated that the minimum non-relativistic amplitude is completely masked by relativistic effects, such as Lorentz boost and the negative-energy P components in the 1S_0 Bethe-Salpeter amplitude of the pp pair
    corecore