1,277 research outputs found

    Scattering lengths of calcium and barium isotopes

    Get PDF
    We have calculated the s-wave scattering length of all the even isotopes of calcium (Ca) and barium (Ba), in order to investigate the prospect of Bose-Einstein condensation (BEC). For Ca we have used an accurate molecular potential based on detailed spectroscopic data. Our calculations show that Ca does not provide other isotopes alternative to the recently Bose condensed 40Ca that suffers strong losses because of a very large scattering length. For Ba we show by using a model potential that the even isotopes cover a broad range of scattering lengths, opening the possibility of BEC for at least one of the isotopes.Comment: 4 page

    Non-exponential one-body loss in a Bose-Einstein condensate

    Full text link
    We have studied the decay of a Bose-Einstein condensate of metastable helium atoms in an optical dipole trap. In the regime where two- and three-body losses can be neglected we show that the Bose-Einstein condensate and the thermal cloud show fundamentally different decay characteristics. The total number of atoms decays exponentially with time constant tau; however, the thermal cloud decays exponentially with time constant (4/3)tau and the condensate decays much faster, and non-exponentially. We show that this behaviour, which should be present for all BECs in thermal equilibrium with a considerable thermal fraction, is due to a transfer of atoms from the condensate to the thermal cloud during its decay.Comment: The intuitive explanation of the atomic transfer effect has been correcte

    Ultracold mixtures of metastable He and Rb: scattering lengths from ab initio calculations and thermalization measurements

    Full text link
    We have investigated the ultracold interspecies scattering properties of metastable triplet He and Rb. We performed state-of-the-art ab initio calculations of the relevant interaction potential, and measured the interspecies elastic cross section for an ultracold mixture of metastable triplet 4^4He and 87^{87}Rb in a quadrupole magnetic trap at a temperature of 0.5 mK. Our combined theoretical and experimental study gives an interspecies scattering length a4+87=+174+1a_{4+87}=+17^{+1}_{-4} a0a_0, which prior to this work was unknown. More general, our work shows the possibility of obtaining accurate scattering lengths using ab initio calculations for a system containing a heavy, many-electron atom, such as Rb.Comment: 11 pages, 11 figures, accepted for publication in Phys. Rev.

    Metastable Feshbach Molecules in High Rotational States

    Full text link
    We experimentally demonstrate Cs2 Feshbach molecules well above the dissociation threshold, which are stable against spontaneous decay on the timescale of one second. An optically trapped sample of ultracold dimers is prepared in an l-wave state and magnetically tuned into a region with negative binding energy. The metastable character of these molecules arises from the large centrifugal barrier in combination with negligible coupling to states with low rotational angular momentum. A sharp onset of dissociation with increasing magnetic field is mediated by a crossing with a g-wave dimer state and facilitates dissociation on demand with a well defined energy.Comment: 4 pages, 5 figure

    Universal three-body parameter in ultracold 4He*

    Get PDF
    We have analyzed our recently measured three-body loss rate coefficient for a Bose-Einstein condensate of spin-polarized metastable triplet 4He atoms in terms of Efimov physics. The large value of the scattering length for these atoms, which provides access to the Efimov regime, arises from a nearby potential resonance. We find the loss coefficient to be consistent with the three-body parameter (3BP) found in alkali-metal experiments, where Feshbach resonances are used to tune the interaction. This provides evidence for a universal 3BP outside the group of alkali-metal elements. In addition, we give examples of other atomic systems without Feshbach resonances but with a large scattering length that would be interesting to analyze once precise measurements of three-body loss are available

    Faster Algorithms for Weighted Recursive State Machines

    Full text link
    Pushdown systems (PDSs) and recursive state machines (RSMs), which are linearly equivalent, are standard models for interprocedural analysis. Yet RSMs are more convenient as they (a) explicitly model function calls and returns, and (b) specify many natural parameters for algorithmic analysis, e.g., the number of entries and exits. We consider a general framework where RSM transitions are labeled from a semiring and path properties are algebraic with semiring operations, which can model, e.g., interprocedural reachability and dataflow analysis problems. Our main contributions are new algorithms for several fundamental problems. As compared to a direct translation of RSMs to PDSs and the best-known existing bounds of PDSs, our analysis algorithm improves the complexity for finite-height semirings (that subsumes reachability and standard dataflow properties). We further consider the problem of extracting distance values from the representation structures computed by our algorithm, and give efficient algorithms that distinguish the complexity of a one-time preprocessing from the complexity of each individual query. Another advantage of our algorithm is that our improvements carry over to the concurrent setting, where we improve the best-known complexity for the context-bounded analysis of concurrent RSMs. Finally, we provide a prototype implementation that gives a significant speed-up on several benchmarks from the SLAM/SDV project
    corecore