21 research outputs found

    Enhanced chemical stability of adomet analogues for improved methyltransferase-directed labeling of DNA.

    Get PDF
    Methyltransferases catalyze specific transfers of methyl groups from the ubiquitous cofactor S-adenosyl-l-methionine (AdoMet) to various nucleophilic positions in biopolymers like DNA, RNA, and proteins. We had previously described synthesis and application of AdoMet analogues carrying sulfonium-bound 4-substituted but-2-ynyl side chains for transfer by methyltransferases. Although useful in certain applications, these cofactor analogues exhibited short lifetimes in physiological buffers. Examination of the reaction kinetics and products showed that their fast inactivation followed a different pathway than observed for AdoMet and rather involved a pH-dependent addition of a water molecule to the side chain. This side reaction was eradicated by synthesis of a series of cofactor analogues in which the separation between an electronegative group and the triple bond was increased from one to three carbon units. The designed hex-2-ynyl moiety-based cofactor analogues with terminal amino, azide, or alkyne groups showed a markedly improved enzymatic transalkylation activity and proved well suitable for methyltransferase-directed sequence-specific labeling of DNA in vitro and in bacterial cell lysates

    Lineage-specific variations in the trigger loop modulate RNA proofreading by bacterial RNA polymerases

    Get PDF
    RNA cleavage by bacterial RNA polymerase (RNAP) has been implicated in transcriptional proofreading and reactivation of arrested transcription elongation complexes but its molecular mechanism is less understood than the mechanism of nucleotide addition, despite both reactions taking place in the same active site. RNAP from the radioresistant bacterium Deinococcus radiodurans is characterized by highly efficient intrinsic RNA cleavage in comparison with Escherichia coli RNAP. We find that the enhanced RNA cleavage activity largely derives from amino acid substitutions in the trigger loop (TL), a mobile element of the active site involved in various RNAP activities. The differences in RNA cleavage between these RNAPs disappear when the TL is deleted, or in the presence of GreA cleavage factors, which replace the TL in the active site. We propose that the TL substitutions modulate the RNA cleavage activity by altering the TL folding and its contacts with substrate RNA and that the resulting differences in transcriptional proofreading may play a role in bacterial stress adaptation.</p

    Selective chemical tracking of Dnmt1 catalytic activity in live cells

    No full text
    Raw gel images for manuscript MOLECULAR-CELL-D-21-01524THIS DATASET IS ARCHIVED AT DANS/EASY, BUT NOT ACCESSIBLE HERE. TO VIEW A LIST OF FILES AND ACCESS THE FILES IN THIS DATASET CLICK ON THE DOI-LINK ABOV

    Cytosine-5-methyltransferases add aldehydes to DNA.

    No full text
    Targeted methylation of cytosine residues by S-adenosylmethionine–dependent DNA methyltransferases modulates gene expression in vertebrates. Here we show that cytosine-5-methyltransferases catalyze reversible covalent addition of exogenous aliphatic aldehydes to their target residues in DNA, thus yielding corresponding 5-α-hydroxyalkylcytosines. Such atypical enzymatic reactions with non-cofactor-like substrates open new ways for sequence-specific derivatization of DNA and demonstrate enzymatic exchange of 5-hydroxymethyl groups on cytosine in support of an oxidative mechanism of DNA demethylation

    Engineering the DNA cytosine-5 methyltransferase reaction for sequence-specific labeling of DNA.

    Get PDF
    DNA methyltransferases catalyse the transfer of a methyl group from the ubiquitous cofactor S-adenosyl-L-methionine (AdoMet) onto specific target sites on DNA and play important roles in organisms from bacteria to humans. AdoMet analogs with extended propargylic side chains have been chemically produced for methyltransferase-directed transfer of activated groups (mTAG) onto DNA, although the efficiency of reactions with synthetic analogs remained low. We performed steric engineering of the cofactor pocket in a model DNA cytosine-5 methyltransferase (C5-MTase), M.HhaI, by systematic replacement of three non-essential positions, located in two conserved sequence motifs and in a variable region, with smaller residues. We found that double and triple replacements lead to a substantial improvement of the transalkylation activity, which manifests itself in a mild increase of cofactor binding affinity and a larger increase of the rate of alkyl transfer. These effects are accompanied with reduction of both the stability of the product DNA-M.HhaI-AdoHcy complex and the rate of methylation, permitting competitive mTAG labeling in the presence of AdoMet. Analogous replacements of two conserved residues in M.HpaII and M2.Eco31I also resulted in improved transalkylation activity attesting a general applicability of the homology-guided engineering to the C5-MTase family and expanding the repertoire of sequence-specific tools for covalent in vitro and ex vivo labeling of DNA

    Base flipping in DNA: Pathways and energetics studied with molecular dynamic simulations

    No full text
    Carrying out chemistry on the bases of DNA, necessary for biological processes such as methylation or repair, requires flipping the base into an accessible position. In this work, molecular dynamics simulations are used to generate a free energy profile for flipping a cytosine base out of its helical stack in double-stranded DNA. The results shed light on the mechanics of this process by comparing routes for base flipping via the minor and major grooves
    corecore