37 research outputs found

    Assessment of roll-out potential of CITYLAB solutions to other CITYLAB living labs

    Get PDF
    This report analyses to what extent the seven CITYLAB implementations may be successfully transferred from their original implementation city to other CITYLAB cities. CITYLAB supports seven Living Labs where innovative urban freight measures are implemented, analysed and rolled out. The focus of this report is to clarify ‘if’ and ‘how’ the seven implementations can be transferred and scaled to the other CITYLAB cities. The CITYLAB cities will learn, from this report, which implementations may be transferred to their own context. Furthermore, they will gain understanding in possibilities to improve the conditions for better chances of a successful transfer of CITYLAB implementations. The transferability methodology adopted in TIDE has been taken as the basis for the CITYLAB methodology as it is the most developed and most relevant to CITYLAB. An appropriate adjustment of the TIDE methodology was necessary as, on the one hand, TIDE examined the transferability of measures in general, while CITYLAB analyses the transferability of applied measures to specific cities. On the other hand, TIDE analysed innovative urban transport and mobility concepts whereas CITYLAB is dealing with the implementation of innovative logistics solutions. The seven consecutive steps of the CITYLAB transferability analysis are: STEP 1: Implementation statement/objectives and scoping STEP 2: Clarification of the impacts of the implementation STEP 3: Identification of upscaling/downscaling needs of implementations STEP 4: Identification of success factors of implementations STEP 5: Identification of the level of importance of success factors STEP 6: Assessment of success factors in the context of adopter city STEP 7: Conclusions on the transferability of implementations The summarized results of the CITYLAB transferability analysis are shown in the chart overview. The ranking shows for each implementation in which CITYLAB city the chance for successful transfer is the best

    Significant difference between three observers in the assessment of intraepidermal nerve fiber density in skin biopsy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The determination of Intraepidermal Nerve Fiber Density (IENFD) in skin biopsy is a useful method for the evaluation of different types of peripheral neuropathies. To allow a reliable use of the method it is necessary to determine interobserver reliability. Previous studies dealing with this topic used limited suitable statistical methods.</p> <p>Methods</p> <p>In the present study three observers determined the IENFD and estimated the staining quality of the basement membrane for an adequate quantity of 120 skin biopsies (stained with indirect immunofluorescence technique) from 68 patients. More adequate statistical methods like intraclass correlation coefficient and Bland Altman Plot were chosen to estimate interobserver reliability.</p> <p>Results</p> <p>We found an unexpected significant difference in IENFD between the observers (p < 0.05) and so the results of this study are not in line with the high interobserver reliability reported before (intraclass correlation coefficient: 0.73). The Bland Altmann Plot showed a variance growing with rising mean. The difference in IENFD between the observers and the resulting low interobserver reliability is likely caused by different interpretations of the standard counting rules. There was no significant difference in IENFD between observers for biopsies with a well-defined basement membrane. Thus skin biopsies with an inexactly defined basement membrane should not be used diagnostically for the determination of IENFD.</p> <p>Conclusion</p> <p>These results emphasise that standardisation of the method is extremely important and at least two observers should analyse skin biopsies with critical IENFD near the cut-off values.</p

    Electric toothbrush application is a reliable and valid test for differentiating temporomandibular disorders pain patients from controls

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Current methods for identifying patients with pain hypersensitivity are sufficiently complex to limit their widespread application in clinical settings. We assessed the reliability and validity of a simple multi-modal vibrotactile stimulus, applied using an electric toothbrush, to evaluate its potential as a screening tool for central sensitization.</p> <p>Methods</p> <p>Fourteen female temporomandibular disorders (TMD) subjects with myofascial pain (RDC/TMD Ia or Ib) and arthralgia (RDC/TMD IIIa) were compared to 13 pain-free controls of matched age and gender. Vibrotactile stimulus was performed with an electric toothbrush, applied with 1 pound pressure for 30 seconds in four locations: over the lateral pole of the temporomandibular joint, masseter, temporalis, and mid-ventral surface of forearm. Pain intensity (0–10) was recorded following the stimulus at 0, 15, 30, and 60 seconds. Test-retest reliability was assessed with measurements from 8 participants, taken 2–12 hours apart. Case versus control differentiation involved comparison of area under the curve (AUC). A receiver operating characteristic (ROC) curve was used to determine cutoff AUC scores for maximum sensitivity and specificity for this multi-modal vibrotactile stimulus.</p> <p>Results</p> <p>Test-retest reliability resulted in an ICC of 0.87 for all 4 pooled sites. ROC-determined AUC cutoff scores resulted in a sensitivity of 57% and specificity of 92% for all 4 pooled sites.</p> <p>Conclusion</p> <p>The electric toothbrush stimulus had excellent test-retest reliability. Validity of the scores was demonstrated with modest sensitivity and good specificity for differentiating TMD pain patients from controls, which are acceptable properties for a screening test.</p

    Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink

    Get PDF
    A multi-center study has been set up to accurately characterize the optical properties of diffusive liquid phantoms based on Intralipid and India ink at near-infrared (NIR) wavelengths. Nine research laboratories from six countries adopting different measurement techniques, instrumental set-ups, and data analysis methods determined at their best the optical properties and relative uncertainties of diffusive dilutions prepared with common samples of the two compounds. By exploiting a suitable statistical model, comprehensive reference values at three NIR wavelengths for the intrinsic absorption coefficient of India ink and the intrinsic reduced scattering coefficient of Intralipid-20% were determined with an uncertainty of about 2% or better, depending on the wavelength considered, and 1%, respectively. Even if in this study we focused on particular batches of India ink and Intralipid, the reference values determined here represent a solid and useful starting point for preparing diffusive liquid phantoms with accurately defined optical properties. Furthermore, due to the ready availability, low cost, long-term stability and batch-to-batch reproducibility of these compounds, they provide a unique fundamental tool for the calibration and performance assessment of diffuse optical spectroscopy instrumentation intended to be used in laboratory or clinical environment. Finally, the collaborative work presented here demonstrates that the accuracy level attained in this work for optical properties of diffusive phantoms is reliable

    Hot Water Epilepsy

    No full text

    Induction of epileptiform activity by temperature elevation in hippocampal slices from young rats: an in vitro model for febrile seizures?

    No full text
    Extracellular field potential recordings were performed in the CA1 subfield of hippocampal slices obtained from Wistar rats aged 2-38 days. When the brain tissue was maintained at 35 degrees-36 degrees C (values obtained in the tissue chamber well), single-shock orthodromic stimuli elicited a response in the stratum pyramidale that consisted of a single population spike. In contrast, when the temperature in the well was increased to levels greater than 38.2 degrees C for periods of 5-15 min, the same type of stimuli elicited an epileptiform response characterized by a 250- to 600-ms-long, positive-going field potential with superimposed, multiple, negative-going population spikes. This potential resembled the epileptiform response recorded in the hippocampal slice in the presence of convulsants such as penicillin or bicuculline. Once the temperature was restored to control values (i.e., 35 degrees-36 degrees C) after induction of epileptiform activity, the abnormal response could be observed for less than or equal to 2 h. In some experiments (approximately one third of the successful trials), spontaneous epileptiform discharges appeared during and persisted after the increase in temperature. The ability of the hyperthermic period to induce epileptiform changes was age dependent: Epileptiform activity outlasting the period of temperature elevation was not observed in slices obtained from rats aged less than 4 days or greater than 28 days. Our data show that epileptiform activity can be induced by a transient increase in temperature and that the age of the animals from which slices are obtained plays an important role in the appearance of this phenomenon.(ABSTRACT TRUNCATED AT 250 WORDS
    corecore