7,600 research outputs found

    Crossover from commensurate to incommensurate antiferromagnetism in stoichiometric NaFeAs revealed by single-crystal 23Na,75As-NMR experiments

    Full text link
    We report results of 23Na and 75As nuclear magnetic resonance (NMR) experiments on a self-flux grown high-quality single crystal of stoichiometric NaFeAs. The NMR spectra revealed a tetragonal to twinned-orthorhombic structural phase transition at T_O = 57 K and an antiferromagnetic (AF) transition at T_AF = 45 K. The divergent behavior of nuclear relaxation rate near T_AF shows significant anisotropy, indicating that the critical slowing down of stripe-type AF fluctuations are strongly anisotropic in spin space. The NMR spectra at low enough temperatures consist of sharp peaks showing a commensurate stripe AF order with a small moment \sim 0.3 muB. However, the spectra just below T_AF exhibits highly asymmetric broadening pointing to an incommensurate modulation. The commensurate-incommensurate crossover in NaFeAs shows a certain similarity to the behavior of SrFe2As2 under high pressure.Comment: 5 pages, 5 figures, revised version to appear in J. Phys. Soc. Jp

    Exploring Topological Phases With Quantum Walks

    Get PDF
    The quantum walk was originally proposed as a quantum mechanical analogue of the classical random walk, and has since become a powerful tool in quantum information science. In this paper, we show that discrete time quantum walks provide a versatile platform for studying topological phases, which are currently the subject of intense theoretical and experimental investigation. In particular, we demonstrate that recent experimental realizations of quantum walks simulate a non-trivial one dimensional topological phase. With simple modifications, the quantum walk can be engineered to realize all of the topological phases which have been classified in one and two dimensions. We further discuss the existence of robust edge modes at phase boundaries, which provide experimental signatures for the non-trivial topological character of the system

    S wave superconductivity in newly discovered superconductor BaTi2_2Sb2_2O revealed by 121/123^{121/123}Sb-NMR/Nuclear Quadrupole Resonance measurements

    Get PDF
    We report the 121/123^{121/123}Sb-NMR/nuclear quadrupole resonance (NQR) measurements on the newly-discovered superconductor BaTi2_2Sb2_2O with a two-dimensional Ti2_2O square-net layer formed with Ti3+^{3+} (3d1d^1). NQR measurements revealed that the in-plane four-fold symmetry is broken at the Sb site below TAT_{\rm A} \sim 40 K, without an internal field appearing at the Sb site. These exclude a spin-density wave (SDW)/ charge density wave (CDW) ordering with incommensurate correlations, but can be understood with the commensurate CDW ordering at TAT_{\rm A}. The spin-lattice relaxation rate 1/T11/T_1, measured at the four-fold symmetry breaking site, decreases below superconducting (SC) transition temperature TcT_{\rm c}, indicative of the microscopic coexistence of superconductivity and the CDW/SDW phase below TAT_{\rm A}. Furthermore, 1/T11/T_1 of 121^{121}Sb-NQR shows a coherence peak just below TcT_{\rm c} and decreases exponentially at low temperatures. These results are in sharp contrast with those in cuprate and iron-based superconductors, and strongly suggest that its SC symmetry is classified to an ordinary s-wave state.Comment: 5 pages, 6 figure

    Magnetic and superconducting properties on S-type single-crystal CeCu2_2Si2_2 probed by 63^{63}Cu nuclear magnetic resonance and nuclear quadrupole resonance

    Get PDF
    We have performed 63^{63}Cu nuclear magnetic resonance/nuclear quadrupole resonance measurements to investigate the magnetic and superconducting (SC) properties on a "superconductivity dominant" (SS-type) single crystal of CeCu2_2Si2_2. Although the development of antiferromagnetic (AFM) fluctuations down to 1~K indicated that the AFM criticality was close, Korringa behavior was observed below 0.8~K, and no magnetic anomaly was observed above TcT_{\rm c} \sim 0.6 K. These behaviors were expected in SS-type CeCu2_2Si2_2. The temperature dependence of the nuclear spin-lattice relaxation rate 1/T11/T_1 at zero field was almost identical to that in the previous polycrystalline samples down to 130~mK, but the temperature dependence deviated downward below 120~mK. In fact, 1/T11/T_1 in the SC state could be fitted with the two-gap s±s_{\pm}-wave rather than the two-gap s++s_{++}-wave model down to 90~mK. Under magnetic fields, the spin susceptibility in both directions clearly decreased below TcT_{\rm c}, indicative of the formation of spin singlet pairing. The residual part of the spin susceptibility was understood by the field-induced residual density of states evaluated from 1/T1T1/T_1T, which was ascribed to the effect of the vortex cores. No magnetic anomaly was observed above the upper critical field Hc2H_{c2}, but the development of AFM fluctuations was observed, indicating that superconductivity was realized in strong AFM fluctuations.Comment: 10 pages, 8 figure

    Orbital Properties of Sr3Ru2O7 and Related Ruthenates Probed by 17O-NMR

    Get PDF
    We report a site-separated 17^{17}O-NMR study of the layered perovskite ruthenate Sr3_3Ru2_2O7_7, which exhibits nearly two-dimensional transport properties and itinerant metamagnetism at low temperatures. The local hole occupancies and the spin densities in the oxygen 2p2p orbitals are obtained by means of tight-binding analyses of electric field gradients and anisotropic Knight shifts. These quantities are compared with two other layered perovskite ruthenates: the two-dimensional paramagnet Sr2_2RuO4_4 and the three-dimensional ferromagnet SrRuO3_3. The hole occupancies at the oxygen sites are very large, about one hole per ruthenium atom. This is due to the strong covalent character of the Ru-O bonding in this compound. The magnitude of the hole occupancy might be related to the rotation or tilt of the RuO6_6 octahedra. The spin densities at the oxygen sites are also large, 20-40% of the bulk susceptibilities, but in contrast to the hole occupancies, the spin densities strongly depend on the dimensionality. This result suggests that the density-of-states at the oxygen sites plays an essential role for the understanding of the complex magnetism found in the layered perovskite ruthenates.Comment: 9 pages, 5 figures, to be published in Phys. Rev.

    Metamagnetic Quantum Criticality Revealed by 17O-NMR in the Itinerant Metamagnet Sr3Ru2O7

    Full text link
    We have investigated the spin dynamics in the bilayered perovskite Sr3Ru2O7 as a function of magnetic field and temperature using 17O-NMR. This system sits close to a metamagnetic quantum critical point (MMQCP) for the field perpendicular to the ruthenium oxide planes. We confirm Fermi-liquid behavior at low temperatures except for a narrow field region close to the MMQCP. The nuclear spin-lattice relaxation rate divided by temperature 1/T1T is enhanced on approaching the metamagnetic critical field of 7.9 T and at the critical field 1/T1T continues to increase and does not show Fermi- liquid behavior down to 0.3 K. The temperature dependence of T1T in this region suggests the critical temperature Theta to be 0 K, which is a strong evidence that the spin dynamics possesses a quantum critical character. Comparison between uniform susceptibility and 1/T1T reveals that antiferromagnetic fluctuations instead of two-dimensional ferromagnetic fluctuations dominate the spin fluctuation spectrum at the critical field, which is unexpected for itinerant metamagnetism.Comment: 5 pages, 4 figures, Accepted by Phys. Rev. Let

    A Novel Generic Framework for Track Fitting in Complex Detector Systems

    Full text link
    This paper presents a novel framework for track fitting which is usable in a wide range of experiments, independent of the specific event topology, detector setup, or magnetic field arrangement. This goal is achieved through a completely modular design. Fitting algorithms are implemented as interchangeable modules. At present, the framework contains a validated Kalman filter. Track parameterizations and the routines required to extrapolate the track parameters and their covariance matrices through the experiment are also implemented as interchangeable modules. Different track parameterizations and extrapolation routines can be used simultaneously for fitting of the same physical track. Representations of detector hits are the third modular ingredient to the framework. The hit dimensionality and orientation of planar tracking detectors are not restricted. Tracking information from detectors which do not measure the passage of particles in a fixed physical detector plane, e.g. drift chambers or TPCs, is used without any simplifications. The concept is implemented in a light-weight C++ library called GENFIT, which is available as free software
    corecore