35 research outputs found

    Confined Surface Plasmon-Polariton Amplifiers

    Get PDF

    Current induced anisotropic magnetoresistance in topological insulator films

    Full text link
    Topological insulators are insulating in the bulk but possess spin-momentum locked metallic surface states protected by time-reversal symmetry. The existence of these surface states has been confirmed by angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM). Detecting these surface states by transport measurement, which might at first appear to be the most direct avenue, was shown to be much more challenging than expected. Here, we report a detailed electronic transport study in high quality Bi2Se3 topological insulator thin films. Measurements under in-plane magnetic field, along and perpendicular to the bias current show opposite magnetoresistance. We argue that this contrasting behavior is related to the locking of the spin and current direction providing evidence for helical spin structure of the topological surface states

    Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities.

    Get PDF
    Layered materials can be assembled vertically to fabricate a new class of van der Waals heterostructures a few atomic layers thick, compatible with a wide range of substrates and optoelectronic device geometries, enabling new strategies for control of light-matter coupling. Here, we incorporate molybdenum diselenide/hexagonal boron nitride (MoSe2/hBN) quantum wells in a tunable optical microcavity. Part-light-part-matter polariton eigenstates are observed as a result of the strong coupling between MoSe2 excitons and cavity photons, evidenced from a clear anticrossing between the neutral exciton and the cavity modes with a splitting of 20 meV for a single MoSe2 monolayer, enhanced to 29 meV in MoSe2/hBN/MoSe2 double-quantum wells. The splitting at resonance provides an estimate of the exciton radiative lifetime of 0.4 ps. Our results pave the way for room-temperature polaritonic devices based on multiple-quantum-well van der Waals heterostructures, where polariton condensation and electrical polariton injection through the incorporation of graphene contacts may be realized

    Nonlinear interactions in an organic polariton condensate

    Get PDF
    Under the right conditions, cavity polaritons form a macroscopic condensate in the ground state. The fascinating nonlinear behaviour of this condensate is largely dictated by the strength of polariton–polariton interactions. In inorganic semiconductors, these result principally from the Coulomb interaction between Wannier–Mott excitons. Such interactions are considerably weaker for the tightly bound Frenkel excitons characteristic of organic semiconductors and were notably absent in the first reported demonstration of organic polariton lasing. In this work, we demonstrate the realization of an organic polariton condensate, at room temperature, in a microcavity containing a thin film of 2,7-bis[9,9-di(4-methylphenyl)-fluoren-2-yl]-9,9-di(4-methylphenyl)fluorene. On reaching threshold, we observe the spontaneous formation of a linearly polarized condensate, which exhibits a superlinear power dependence, long-range order and a power-dependent blueshift: a clear signature of Frenkel polariton interactions

    A new type of light switch

    No full text
    corecore