52 research outputs found

    Investigation of AlInN HEMT structures with different AlGaN buffer layers grown on sapphire substrates by MOCVD

    Get PDF
    Cataloged from PDF version of article.We investigate the structural and electrical properties of AlxIn1-xN/AlN/GaN heterostructures with AlGaN buffers grown by MOCVD, which can be used as an alternative to AlInN HEMT structures with GaN buffer. The effects of the GaN channel thickness and the addition of a content graded AlGaN layer to the structural and electrical characteristics were studied through variable temperature Hall effect measurements, high resolution XRD, and AFM measurements. Enhancement in electron mobility was observed in two of the suggested AlxIn1-xN/AlN/GaN/Al0.04Ga0.96N heterostructures when compared to the standard AlxIn1-xN/AlN/GaN heterostructure. This improvement was attributed to better electron confinement in the channel due to electric field arising from piezoelectric polarization charge at the Al0.04Ga0.96N/GaN heterointerface and by the conduction band discontinuity formed at the same interface. If the growth conditions and design parameters of the AlxIn1-xN HEMT structures with AlGaN buffers can be modified further, the electron spillover from the GaN channel can be significantly limited and even higher electron mobilities, which result in lower two-dimensional sheet resistances, would be possible. (C) 2012 Elsevier B.V. All rights reserved

    Temperature dependent negative capacitance behavior in (Ni/Au)/AlGaN/AIN/GaN heterostructures

    Get PDF
    Cataloged from PDF version of article.The temperature dependent capacitance voltage (C-V) and conductance voltage (G/omega-V) characteristics of (Ni/Au)/Al(0.22)Ga(0.78)N/AlN/GaN heterostructures were investigated by considering the series resistance (R(s)) effect in the temperature range of 80-390 K. The experimental results show that the values of C and G/omega are strongly functioning of temperature and bias voltage. The values of C cross at a certain forward bias voltage point (similar to 2.8 V) and then change to negative values for each temperature, which is known as negative capacitance (NC) behavior. In order to explain the NC behavior, we drawn the C vs I and G/omega vs I plots for various temperatures at the same bias voltage. The negativity of the C decreases with increasing temperature at the forward bias voltage, and this decrement in the NC corresponds to the increment of the conductance. When the temperature was increased, the value of C decreased and the intersection point shifted towards the zero bias direction. This behavior of the C and G/omega values can be attributed to an increase in the polarization and the introduction of more carriers in the structure. R(s) values increase with increasing temperature. Such temperature dependence is in obvious disagreement with the negative temperature coefficient of R or G reported in the literature. The intersection behavior of C-V curves and the increase in R(s) with temperature can be explained by the lack of free charge carriers, especially at low temperatures. (C) 2010 Elsevier B.V. All rights reserve

    Electron transport properties in Al0.25Ga0.75N/AIN/GaN hetrostructures with different InGaN back barrier layers and GaN channel thickness grown by MOCVD

    Get PDF
    Cataloged from PDF version of article.The electron transport properties in Al0.25Ga0.75N/AlN/GaN/InxGa1-xN/GaN double heterostructures with various indium compositions and GaN channel thicknesses were investigated. Samples were grown on c-plane sapphire substrates by MOCVD and evaluated using variable temperature Hall effect measurements. In order to understand the observed transport properties, various scattering mechanisms, such as acoustic phonon, optical phonon, interface roughness, background impurity, and alloy disorder, were included in the theoretical model that was applied to the temperature-dependent mobility data. It was found that low temperature (T 160 K), optical phonon scattering is the dominant scattering mechanism for AlGaN/AlN/GaN/InGaN/GaN heterostructures. The higher mobility of the structures with InGaN back barriers was attributed to the large conduction band discontinuity obtained at the channel/buffer interface, which leads to better electron confinement. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinhei

    Numerical optimization of In-mole fractions and layer thicknesses in AlxGa1-xN/AlN/GaN high electron mobility transistors with InGaN back barriers

    Get PDF
    The effects of the In-mole fraction (x) of an InxGa 1-xN back barrier layer and the thicknesses of different layers in pseudomorphic AlyGa1-yN/AlN/GaN/InxGa 1-xN/GaN heterostructures on band structures and carrier densities were investigated with the help of one-dimensional self-consistent solutions of non-linear SchrdingerPoisson equations. Strain relaxation limits were also calculated for the investigated AlyGa1-yN barrier layer and InxGa1-xN back barriers. From an experimental point of view, two different optimized structures are suggested, and the possible effects on carrier density and mobility are discussed. © 2011 Elsevier B.V. All rights reserved

    Investigation of AlInN HEMT structures with different AlGaN buffer layers grown on sapphire substrates by MOCVD

    Get PDF
    We investigate the structural and electrical properties of Al xIn 1-xN/AlN/GaN heterostructures with AlGaN buffers grown by MOCVD, which can be used as an alternative to AlInN HEMT structures with GaN buffer. The effects of the GaN channel thickness and the addition of a content graded AlGaN layer to the structural and electrical characteristics were studied through variable temperature Hall effect measurements, high resolution XRD, and AFM measurements. Enhancement in electron mobility was observed in two of the suggested Al xIn 1 -xN/AlN/GaN/Al 0.04Ga 0.96N heterostructures when compared to the standard Al xIn 1 -xN/AlN/GaN heterostructure. This improvement was attributed to better electron confinement in the channel due to electric field arising from piezoelectric polarization charge at the Al 0.04Ga 0.96N/GaN heterointerface and by the conduction band discontinuity formed at the same interface. If the growth conditions and design parameters of the Al xIn 1-xN HEMT structures with AlGaN buffers can be modified further, the electron spillover from the GaN channel can be significantly limited and even higher electron mobilities, which result in lower two-dimensional sheet resistances, would be possible. © 2012 Elsevier B.V. All rights reserved

    Improvement of breakdown characteristics in AlGaN/GaN/Al xGa 1-xN HEMT based on a grading Al xGa 1-xN buffer layer

    Get PDF
    To improve the breakdown characteristics of an AlGaN/GaN based high electron mobility transistor (HEMT) for high voltage applications, AlGaN/GaN/Al xGa 1-xN double heterostructure (DH-HEMTs) were designed and fabricated by replacing the semi-insulating GaN buffer with content graded Al xGa 1-xN (x=x 1 → x 2, x 1 > x 2), in turn linearly lowering the Al content x from x 1=90% to x 2=5% toward the front side GaN channel on a high temperature AlN buffer layer. The use of a highly resistive Al xGa 1-xN epilayer suppresses the parasitic conduction in the GaN buffer, and the band edge discontinuity limits the channel electrons spillover, thereby reducing leakage current and drain current collapse. In comparison with the conventional HEMT that use a semi-insulating GaN buffer, the fabricated DH-HEMT device with the same size presents a remarkable enhancement of the breakdown voltage. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Multi-Target Drugs: The Trend of Drug Research and Development

    Get PDF
    Summarizing the status of drugs in the market and examining the trend of drug research and development is important in drug discovery. In this study, we compared the drug targets and the market sales of the new molecular entities approved by the U.S. Food and Drug Administration from January 2000 to December 2009. Two networks, namely, the target–target and drug–drug networks, have been set up using the network analysis tools. The multi-target drugs have much more potential, as shown by the network visualization and the market trends. We discussed the possible reasons and proposed the rational strategies for drug research and development in the future

    Field theory aspects of non-Abelian T-duality and N = 2 linear quivers

    Get PDF
    In this paper we propose a linear quiver with gauge groups of increasing rank as field theory dual to the AdS 5 background constructed by Sfetsos and Thompson through non-Abelian T-duality. The formalism to study 4d N = 2 SUSY CFTs developed by Gaiotto and Maldacena is essential for our proposal. We point out an interesting relation between (Hopf) Abelian and non-Abelian T-dual backgrounds that allows to see both backgrounds as different limits of a solution constructed by Maldacena and Núñez. This suggests different completions of the long quiver describing the CFT dual to the nonAbelian T-dual background that match different observables

    Type IIB supergravity solutions with AdS5 from Abelian and non-Abelian T dualities

    Get PDF
    We present a large class of new backgrounds that are solutions of type IIB supergravity with a warped AdS5{}_5 factor, non-trivial axion-dilaton, BB-field and three-form Ramond-Ramond flux but yet have no five-form flux. We obtain these solutions and many of their variations by judiciously applying non-Abelian and Abelian T-dualities, as well as coordinate shifts to AdS5×X5{}_5\times X_5 IIB supergravity solutions with X5=S5,T1,1,Yp,qX_5=S^5, T^{1,1}, Y^{p,q}. We address a number of issues pertaining to charge quantization in the context of non-Abelian T-duality. We comment on some properties of the expected dual super conformal field theories by studying their CFT central charge holographically. We also use the structure of the supergravity Page charges, central charges and some probe branes to infer aspects of the dual super conformal field theories.Comment: 71 pages, one table. v2: References added, some normalizations corrected, results unchange

    Mirena en acne

    No full text
    corecore