123 research outputs found

    Comparative techno-economic analysis of ORC and gasification for bioenergy applications

    Get PDF
    The use of biomass for decentralized energy production has undergone a significant development the last years. The fact that this fuel is CO(2)-free provides many advantages in European and world aims for sustainable energy sources. Biomass trigeneration is a relatively new concept, which has the potential to improve the bioenergy economics for areas with warm climate, for which traditional biomass cogeneration was unfeasible. This concept can be applied with various energy conversion technologies, two of which are investigated in this paper: ORC and gasification. Both technologies are applied for a specific case study. The technological and financial comparison of the two technologies shows that gasification offers improved yield for the investment, mainly due to the higher electrical efficiency factor. However, attention should be placed to the increased investment risk of gasification projects, which could be an aversive factor for some investors. (C) 2008 Elsevier Ltd. All rights reserved

    A Small Power Recovery Expander for Heat Pump COP Improvement

    Get PDF
    AbstractHeat pumps are becoming more and more applied for heating, due to their possibility of working as cooling systems in the summer period. However, up to now, recovery of expansion work in small system has not been considered as a viable solution, because of the limited amount of recoverable energy and of difficulties in designing and operating a two-phase flow expander.The idea here presented is to investigate the application of a radial piston machine, adapted from oleodynamic motor designs, as an expander that will be coupled with the compressor motor shaft; the consequent power reduction goes directly to COP improvement.First, heat pumps working conditions (pressures, mass and volume flows) are defined, and the possible power recovery is calculated. Then, a model for the performance calculation of the radial piston motors used as expander is presented; the model considers the kinematics of the mechanical system and uses real fluid properties.The results indicate that such a machine could be developed from existing units with limited modifications, encourage to develop a test rig, and to run preliminary experimental work in order to measure the real performance

    Audiovisual Multisensory Integration and Evoked Potentials in Young Adults With and Without Attention-Deficit/Hyperactivity Disorder

    Get PDF
    The purpose of this study was to assess how young adults with attention-deficit/hyperactivity disorder (ADHD) process audiovisual (AV) multisensory stimuli using behavioral and neurological measures. Adults with a clinical diagnosis of ADHD (n = 10) and neurotypical controls (n = 11) completed a simple response time task, consisting of auditory, visual, and AV multisensory conditions. Continuous 64-electrode electroencephalography (EEG) was collected to assess neurological responses to each condition. The AV multisensory condition resulted in the shortest response times for both populations. Analysis using the race model (Miller, 1982) demonstrated that those with ADHD had violation of the race model earlier in the response, which may be a marker for impulsivity. EEG analysis revealed that both groups had early multisensory integration (MSI) occur following multisensory stimulus onset. There were also significant group differences in event-related potentials (ERPs) in frontal, parietal, and occipital brain regions, which are regions reported to be altered in those with ADHD. This study presents results examining multisensory processing in the population of adults with ADHD, and can be used as a foundation for future ADHD research using developmental research designs as well as the development of novel technological supports

    Dynamic model of supercritical Organic Rankine Cycle waste heat recovery system for internal combustion engine

    Get PDF
    The supercritical Organic Rankine Cycle (ORC) for the Waste Heat Recovery (WHR) from Internal Combustion (IC) engines has been a growing research area in recent years, driven by the aim to enhance the thermal efficiency of the ORC and engine. Simulation of a supercritical ORC-WHR system before a real-time application is important as high pressure in the system may lead to concerns about safety and availability of components. In the ORC-WHR system, the evaporator is the main contributor to thermal inertia of the system and is considered to be the critical component since the heat transfer of this device influences the efficiency of the system. Since the thermo-physical properties of the fluid at supercritical pressures are dependent on temperature, it is necessary to consider the variations in properties of the working fluid. The wellknown Finite Volume (FV) discretization method is generally used to take those property changes into account. However, a FV model of the evaporator in steady state condition cannot be used to predict the thermal inertia of the cycle when it is subjected to transient heat sources. In this paper, a dynamic FV model of the evaporator has been developed and integrated with other components in the ORC-WHR system. The stability and transient responses along with the performance of the ORC-WHR system for the transient heat source are investigated and are also included in this paper

    Discrepancy between radiological and pathological size of renal masses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tumor size is a critical variable in staging for renal cell carcinoma. Clinicians rely on radiological estimates of pathological tumor size to guide patient counseling regarding prognosis, choice of treatment strategy and entry into clinical trials. If there is a discrepancy between radiological and pathological measurements of renal tumor size, this could have implications for clinical practice. Our study aimed to compare the radiological size of solid renal tumors on computed tomography (CT) to the pathological size in an Australian population.</p> <p>Methods</p> <p>We identified 157 patients in the Westmead Renal Tumor Database, for whom data was available for both radiological tumor size on CT and pathological tumor size. The paired Student's <it>t</it>-test was used to compare the mean radiological tumor size and the mean pathological tumor size. Statistical significance was defined as <it>P </it>< 0.05. We also identified all cases in which post-operative down-staging or up-staging occurred due to discrepancy between radiological and pathological tumor sizes. Additionally, we examined the relationship between Fuhrman grade and radiological tumor size and pathological T stage.</p> <p>Results</p> <p>Overall, the mean radiological tumor size on CT was 58.3 mm and the mean pathological size was 55.2 mm. On average, CT overestimated pathological size by 3.1 mm (<it>P </it>= 0.012). CT overestimated pathological tumor size in 92 (58.6%) patients, underestimated in 44 (28.0%) patients and equaled pathological size in 21 (31.4%) patients. Among the 122 patients with pT1 or pT2 tumors, there was a discrepancy between clinical and pathological staging in 35 (29%) patients. Of these, 21 (17%) patients were down-staged post-operatively and 14 (11.5%) were up-staged. Fuhrman grade correlated positively with radiological tumor size (<it>P </it>= 0.039) and pathological tumor stage (<it>P </it>= 0.003).</p> <p>Conclusions</p> <p>There was a statistically significant but small difference (3.1 mm) between mean radiological and mean pathological tumor size, but this is of uncertain clinical significance. For some patients, the difference leads to a discrepancy between clinical and pathological staging, which may have implications for pre-operative patient counseling regarding prognosis and management.</p

    Structure Activity Relationship of Dendrimer Microbicides with Dual Action Antiviral Activity

    Get PDF
    Topical microbicides, used by women to prevent the transmission of HIV and other sexually transmitted infections are urgently required. Dendrimers are highly branched nanoparticles being developed as microbicides. However, the anti-HIV and HSV structure-activity relationship of dendrimers comprising benzyhydryl amide cores and lysine branches, and a comprehensive analysis of their broad-spectrum anti-HIV activity and mechanism of action have not been published.Dendrimers with optimized activity against HIV-1 and HSV-2 were identified with respect to the number of lysine branches (generations) and surface groups. Antiviral activity was determined in cell culture assays. Time-of-addition assays were performed to determine dendrimer mechanism of action. In vivo toxicity and HSV-2 inhibitory activity were evaluated in the mouse HSV-2 susceptibility model. Surface groups imparting the most potent inhibitory activity against HIV-1 and HSV-2 were naphthalene disulfonic acid (DNAA) and 3,5-disulfobenzoic acid exhibiting the greatest anionic charge and hydrophobicity of the seven surface groups tested. Their anti-HIV-1 activity did not appreciably increase beyond a second-generation dendrimer while dendrimers larger than two generations were required for potent anti-HSV-2 activity. Second (SPL7115) and fourth generation (SPL7013) DNAA dendrimers demonstrated broad-spectrum anti-HIV activity. However, SPL7013 was more active against HSV and blocking HIV-1 envelope mediated cell-to-cell fusion. SPL7013 and SPL7115 inhibited viral entry with similar potency against CXCR4-(X4) and CCR5-using (R5) HIV-1 strains. SPL7013 was not toxic and provided at least 12 h protection against HSV-2 in the mouse vagina.Dendrimers can be engineered with optimized potency against HIV and HSV representing a unique platform for the controlled synthesis of chemically defined multivalent agents as viral entry inhibitors. SPL7013 is formulated as VivaGel(R) and is currently in clinical development to provide protection against HIV and HSV. SPL7013 could also be combined with other microbicides

    Methodology – A Review of Intelligent Manufacturing Scope, Strategy and Simulation

    Get PDF
    This paper presents a critical review of some existing modelling, control and optimization techniques for energy saving, carbon emission reduction in manufacturing processes. The study on various production issues reveals different levels of intelligent manufacturing approaches. Then methods and strategies to tackle the sustainability issues in manufacturing are summarized. Modelling tools such as discrete (dynamic) event system (DES/DEDS) and agent-based modelling/simulation (ABS) approaches are reviewed from the production planning and control prospective. These approaches will provide some guidelines for the development of advanced factory modelling, resource flow analysis and assisting the identification of improvement potentials, in order to achieve more sustainable manufacturing

    In Vivo Diffuse Optical Tomography and Fluorescence Molecular Tomography

    Full text link

    Biomass combustion with ORC for decentralized bioenergy applications : a techno-economic approach

    Get PDF
    The use of biomass for decentralised energy production has undergone a significant development the last years. The fact that this fuel is CO2-free provides many advantages in European and world aims for sustainable energy sources. Biomass trigeneration is a relatively new concept, which has the potential to improve the bioenergy economics for areas with warm climate, for which traditional biomass cogeneration was unfeasible. This concept can be applied with various energy conversion technologies, among others the biomass combustion coupled with the Organic Rankine Cycle process. The fact that ORC is a proven technology for waste heat applications provides advantages for its coupling with combustion. This combination is examined in the present study, in terms of the financial yield of an ORC tri-generation project. The concept of ORC biomass trigeneration is applied for a case study in Greece and interesting results regarding the cost and the profitability of the project are presented
    corecore