136 research outputs found

    Biology of the Mi-2/NuRD Complex in SLAC (Stemness, Longevity/Ageing, and Cancer)

    Get PDF
    The dynamic chromatin activities of Mi-2/Nucleosome Remodeling and Histone deacetylation (Mi-2/NuRD) complexes in mammals are at the basis of current research on stemness, longevity/ageing, and cancer (4-2-1/SLAC), and have been widely studied over the past decade in mammals and the elegant model organism, Caenorhabditis elegans. Interestingly, a common emergent theme from these studies is that of distinct coregulator-recruited Mi-2/NuRD complexes largely orchestrating the 4-2-1/SLAC within a unique paradigm by maintaining genome stability via DNA repair and controlling three types of transcriptional programs in concert in a number of cellular, tissue, and organism contexts. Thus, the core Mi-2/NuRD complex plays a central role in 4-2-1/SLAC. The plasticity and robustness of 4-2-1/SLAC can be interpreted as modulation of specific coregulator(s) within cell-specific, tissue-specific, stage-specific, or organism-specific niches during stress induction, ie, a functional module and its networking, thereby conferring differential responses to different environmental cues. According to “Occam’s razor”, a simple theory is preferable to a complex one, so this simplified notion might be useful for exploring 4-2-1/SLAC with a holistic view. This thought could also be valuable in forming strategies for future research, and could open up avenues for cancer prevention and antiageing strategies

    Baseline new bone formation does not predict bone loss in ankylosing spondylitis as assessed by quantitative computed tomography (QCT) - 10-year follow-up

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To evaluate the relationship between bone loss and new bone formation in ankylosing spondylitis (AS) using 10-year X-ray, dual-energy x-ray absorptiometry (DXA) and quantitative computed tomography (QCT) follow-up.</p> <p>Methods</p> <p>Fifteen AS patients free from medical conditions and drugs affecting bone metabolism underwent X-ray, DXA and QCT in 1999 and 2009.</p> <p>Results</p> <p>In spine QCT a statistically significant (p = 0,001) decrease of trabecular bone mineral content (BMC) was observed (change ± SD: 18.0 ± 7.3 mg/cm<sup>3</sup>). In contrast, spine DXA revealed a significant increase of bone mineral density (change ± SD: -0.15 ± 0.14 g/cm<sup>2</sup>). The mean BMC, both at baseline and follow-up was significantly lower (p = 0.02 and p = 0.005, respectively) in advanced radiological group as compared to early radiological group. However, in multiple regression model after adjustment for baseline BMC, the baseline radiological scoring did not influence the progression of bone loss as assessed with QCT (p = 0.22, p for BMC*X-ray syndesmophyte scoring interaction = 0.65, p for ANOVA-based X-ray syndesmophyte scoring*time interaction = 0.39). Baseline BMC was the only significant determinant of 10-year BMC change, to date the longest QCT follow-up data in AS.</p> <p>Conclusions</p> <p>In AS patients who were not using antiosteoporotic therapy spine trabecular bone density evaluated by QCT decreased over 10-year follow-up and was not related to baseline radiological severity of spine involvement.</p

    Low bone mineral density is related to male gender and decreased functional capacity in early spondylarthropathies

    Get PDF
    The objective of this study was to determine the prevalence and risk factors of low bone mineral density (BMD) in patients with spondylarthropathies (SpA) at an early stage of disease. In this cross-sectional study, the BMD of lumbar spine and hips was measured in 130 consecutive early SpA patients. The outcome measure BMD was defined as (1) osteoporosis, (2) osteopenia, and (3) normal bone density. Logistic regression analyses were used to investigate relations between the following variables: age, gender, disease duration, diagnosis, HLA-B27, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), Bath Ankylosing Spondylitis Functional Index (BASFI), Bath Ankylosing Spondylitis Metrology Index (BASMI), extra-spinal manifestations and medication, with outcome measure low BMD (osteopenia and/or osteoporosis). The SpA population had a median time since diagnosis of 6.6 months and a disease duration of 6.3 years. In total, 9% of the early SpA patients had osteoporosis, 38% osteopenia, and 53% normal BMD. On univariate analyses, male gender, diagnosis of ankylosing spondylitis, increased CRP, high BASFI, and high BASMI were significantly associated with low BMD. Factors showing a relation with low BMD in the multivariate model were male gender (OR 4.18, 95% confidence interval (CI) 1.73–10.09), high BASMI (OR 1.54, 95% CI 1.14–2.07), and high BASFI (OR 1.18, 95% CI 1.00–1.39). In early SpA patients, a high frequency (47%) of low BMD in femur as well as in lumbar spine was found. Low BMD was associated with male gender and decreased functional capacity. These findings emphasize the need for more alertness for osteoporosis and osteopenia in spondylarthropathy patients at an early stage of the disease

    The relation between bone mineral density, bone turnover markers, and vitamin D status in ankylosing spondylitis patients with active disease: a cross-sectional analysis

    Get PDF
    Osteoporosis is a well recognized complication of ankylosing spondylitis (AS). This study indicates that increased bone turnover, inflammation, and low vitamin D levels are important in the pathophysiology of AS-related osteoporosis, and that bone turnover markers (BTM) are valuable markers to detect bone loss in AS. The aim of this study was to elucidate the pathophysiology of AS-related osteoporosis by investigating the relation between bone mineral density (BMD), BTM, vitamin D, and clinical assessments of disease activity and physical function, as well as to identify parameters that are related to low BMD (osteopenia or osteoporosis) in AS patients with active disease. One hundred twenty-eight consecutive Dutch AS outpatients were included in this cross-sectional study. Bath AS Disease Activity Index (BASDAI), erythrocyte sedimentation rate (ESR), C-reactive protein, ASAS-endorsed disease activity score (ASDAS), Bath AS Functional Index (BASFI), bone formation markers procollagen type 1 N-terminal peptide (PINP) and osteocalcin (OC), bone resorption marker serum C-telopeptides of type I collagen (sCTX), 25-hydroxyvitamin D (25OHvitD), lumbar spine and hip BMD, and vertebral fractures were assessed. Z-scores of BTM were calculated using matched 10-year cohorts of a Dutch reference group to correct for the normal influence that age and gender have on bone turnover. sCTX Z-score, OC Z-score, BASDAI, age, and gender were independently related to low BMD. In addition, PINP Z-score, ESR, 25OHvitD, age, and gender were independently related to sCTX and/or OC Z-score. This study indicates that increased bone turnover, inflammation, and low vitamin D levels are important in the pathophysiology of AS-related osteoporosis. Furthermore, sCTX and OC Z-scores seem to be valuable markers to detect bone loss in AS patients in daily clinical practice where BMD of the lumbar spine, measured by DXA, may be overestimated due to osteoproliferation in patients with advanced AS

    Group II Intron-Anchored Gene Deletion in Clostridium

    Get PDF
    Clostridium plays an important role in commercial and medical use, for which targeted gene deletion is difficult. We proposed an intron-anchored gene deletion approach for Clostridium, which combines the advantage of the group II intron “ClosTron” system and homologous recombination. In this approach, an intron carrying a fragment homologous to upstream or downstream of the target site was first inserted into the genome by retrotransposition, followed by homologous recombination, resulting in gene deletion. A functional unknown operon CAC1493–1494 located in the chromosome, and an operon ctfAB located in the megaplasmid of C. acetobutylicum DSM1731 were successfully deleted by using this approach, without leaving antibiotic marker in the genome. We therefore propose this approach can be used for targeted gene deletion in Clostridium. This approach might also be applicable for gene deletion in other bacterial species if group II intron retrotransposition system is established

    Retention on Buprenorphine Is Associated with High Levels of Maximal Viral Suppression among HIV-Infected Opioid Dependent Released Prisoners

    Get PDF
    HIV-infected prisoners lose viral suppression within the 12 weeks after release to the community. This prospective study evaluates the use of buprenorphine/naloxone (BPN/NLX) as a method to reduce relapse to opioid use and sustain viral suppression among released HIV-infected prisoners meeting criteria for opioid dependence (OD).From 2005-2010, 94 subjects meeting DSM-IV criteria for OD were recruited from a 24-week prospective trial of directly administered antiretroviral therapy (DAART) for released HIV-infected prisoners; 50 (53%) selected BPN/NLX and were eligible to receive it for 6 months; the remaining 44 (47%) selected no BPN/NLX therapy. Maximum viral suppression (MVS), defined as HIV-1 RNA<50 copies/mL, was compared for the BPN/NLX and non-BPN/NLX (N = 44) groups.The two groups were similar, except the BPN/NLX group was significantly more likely to be Hispanic (56.0% v 20.4%), from Hartford (74.4% v 47.7%) and have higher mean global health quality of life indicator scores (54.18 v 51.40). MVS after 24 weeks of being released was statistically correlated with 24-week retention on BPN/NLX [AOR = 5.37 (1.15, 25.1)], having MVS at the time of prison-release [AOR = 10.5 (3.21, 34.1)] and negatively with being Black [AOR = 0.13 (0.03, 0.68)]. Receiving DAART or methadone did not correlate with MVS.In recognition that OD is a chronic relapsing disease, strategies that initiate and retain HIV-infected prisoners with OD on BPN/NLX is an important strategy for improving HIV treatment outcomes as a community transition strategy

    Effects of the Histone Deacetylase Inhibitor Valproic Acid on Human Pericytes In Vitro

    Get PDF
    Microvascular pericytes are of key importance in neoformation of blood vessels, in stabilization of newly formed vessels as well as maintenance of angiostasis in resting tissues. Furthermore, pericytes are capable of differentiating into pro-fibrotic collagen type I producing fibroblasts. The present study investigates the effects of the histone deacetylase (HDAC) inhibitor valproic acid (VPA) on pericyte proliferation, cell viability, migration and differentiation. The results show that HDAC inhibition through exposure of pericytes to VPA in vitro causes the inhibition of pericyte proliferation and migration with no effect on cell viability. Pericyte exposure to the potent HDAC inhibitor Trichostatin A caused similar effects on pericyte proliferation, migration and cell viability. HDAC inhibition also inhibited pericyte differentiation into collagen type I producing fibroblasts. Given the importance of pericytes in blood vessel biology a qPCR array focusing on the expression of mRNAs coding for proteins that regulate angiogenesis was performed. The results showed that HDAC inhibition promoted transcription of genes involved in vessel stabilization/maturation in human microvascular pericytes. The present in vitro study demonstrates that VPA influences several aspects of microvascular pericyte biology and suggests an alternative mechanism by which HDAC inhibition affects blood vessels. The results raise the possibility that HDAC inhibition inhibits angiogenesis partly through promoting a pericyte phenotype associated with stabilization/maturation of blood vessels
    corecore