54 research outputs found

    3-D microstructural model of freckle formation validated using in situ experiments

    Get PDF
    AbstractA 3-D model of freckle (solute channel) formation at a microstructural level was coupled with in situ X-ray radiography to investigate the mechanisms of freckle initiation and growth. The model predictions for solute partitioning, diffusion and convection were validated via in situ X-ray radiographic measurements in Ga–25wt.% In alloy, showing good agreement. Other key features, such as freckle channel width and critical Rayleigh number, also correlated well. The validated model was used to investigate freckle formation under a range of solidification conditions. Two distinct stages of freckle onset were observed, identified via the dendrite tip growth and solute profiles. The first stage corresponds to lower flow velocities with large fluctuations; in the second stage the velocities stabilize, with established recirculating flows forming solute channels. The influence of imperfections in dendritic morphology, such as grain boundaries and primary spacing variations, on the critical Rayleigh number was studied. It was found that that these features initiate freckles. Non-intuitively, converging grain boundaries were observed to have the greatest propensity for freckle formation. The resulting new insights on solute plume formation impact a range of phenomena from single-crystal superalloys to magma flows

    Numerical modelling of porosity with combined gas and shrinkage effects in HPDC

    Get PDF
    High-pressure die casting is a manufacturing process in which near-net-shape components are produced rapidly under a pressurized environment. However, due to the relatively higher cooling rate prevailing during the process, isolated liquid pockets form at certain locations, leading to increased porosity formation. A one-dimensional deformable grid numerical model has been developed for predicting the evolution of a single pore in an elementary volume, which combines the diffusion model with the shrinkage affected growth. The model accounts for the change in pore size due to shrinkage and inter-granular growth. This model can provide predictions in representative volumes and be used for component level predictions by combining with a macroscopic model

    Role of the local stress systems on microstructural inhomogeneity during semisolid injection

    Get PDF
    High pressure metal die casting is an extremely dynamic process with widely ranging cooling rates and intensifying pressures, resulting in a wide range of solid fractions and deformation rates simultaneously existing in the same casting. These process parameters and their complex interplay dictate the formation of microstructural solidification defects. In this study, fast synchrotron X-ray imaging experiments simulating high pressure die casting of aluminium alloys were conducted to investigate the effect of solid fraction, loading conditions and semisolid flow on local microstructural inhomogeneity. While most of the existing literature in this field reports speeds up to 10 µm/s for in situ deformation, the present work captures much faster filling and solidification, at speeds closer to 100 µm/s and at different solid fractions. Semisolid deformation of low solid fractions reveals two typical microstructural features: (i) coarser grains in the middle and finer ones near the walls, and (ii) remelting near the solid-liquid interface due to Cu enrichment in the liquid by the flow. Ex situ scans and digital image correlation analysis of the higher solid fraction samples reveal a porosity formation mechanism based on the local state of stresses, microstructure and feeding. Four different characteristics were identified: (i) plug flow, (ii) dead zone (densified mush), (iii) shear and (iv) bulk zones. These insights will be used to develop zone-specific strategies for the numerical modelling of defect formation during die casting

    A 4-D dataset for validation of crystal growth in a complex three-phase material, ice cream

    Get PDF
    Four dimensional (4D, or 3D plus time) X-ray tomographic imaging of phase changes in materials is quickly becoming an accepted tool for quantifying the development of microstructures to both inform and validate models. However, most of the systems studied have been relatively simple binary compositions with only two phases. In this study we present a quantitative dataset of the phase evolution in a complex three-phase material, ice cream. The microstructure of ice cream is an important parameter in terms of sensorial perception, and therefore quantification and modelling of the evolution of the microstructure with time and temperature is key to understanding its fabrication and storage. The microstructure consists of three phases, air cells, ice crystals, and unfrozen matrix. We perform in situ synchrotron X-ray imaging of ice cream samples using in-line phase contrast tomography, housed within a purpose built cold-stage (-40 to +20oC) with finely controlled variation in specimen temperature. The size and distribution of ice crystals and air cells during programmed temperature cycling are determined using 3D quantification. The microstructural evolution of three-phase materials has many other important applications ranging from biological to structural and functional material, hence this dataset can act as a validation case for numerical investigations on faceted and non-faceted crystal growth in a range of materials

    Effects of strain rate on hot tear formation in Al-Si-Cu alloys

    Get PDF
    The alloy casting process is one of the major manufacturing processes to produce near net shape components. The casing process is prone to a wide variety of defects, with hot tear being one of the most detrimental. The two main factors generally recognized as the primary cause for formation of hot tears are the mechanical response of the mush (which effects its permeability), and the solidification range (solidification time). The response of the mushy zone under deformation is mainly affected by the solid fraction, strain rate and grain morphology. Even though the science behind the formation of hot tear is understood, there is no general criterion to quantify the hot tear formation under varying casting conditions. The development of ultra-fast X-ray imaging has facilitated the means to quantify the effects of the critical parameters in-situ and develop better correlations for hot tear prediction. The in situ experiments will also provide insights into mush rheology, which has significant influence on hot tear formation. In this study, isothermal semi solid compression studies of Al-Si-Cu alloys were carried out using specially built thermo-mechanical rig. We studied the effects of the strain rate in the range of 2 × 10^{-4} –0.02/s and solid fraction (~0.6-0.9) on the mechanical response of the mushy zone. The sample were characterized before and after deformation using X-ray micro tomography. The data was subjected to an image processing routine and the amount of porosity and hot tear was quantified. The stress-strain curve of the semisolid alloys showed a characteristic strain softening behaviour for semi solid samples with ~0.6-0.7 solid fraction, irrespective of loading rates, whereas the behaviour at higher fractions were that of constant flow stress. Additionally, in situ compression experiments were carried out, wherein the liquid channel thickness at various strain values were measured. Isolated liquid channels were formed under loading, from where the hot tears were found to nucleate. Hot tear susceptibility was found to increase with increasing strain rate and rheology of the mush, which is dependent on solid fraction

    Revealing dendritic pattern formation in Ni, Fe and Co alloys using synchrotron tomography

    Get PDF
    The microstructural patterns formed during liquid to solid phase transformations control the properties of a wide range of materials. We developed a novel methodology that allows in situ quantification of the microstructures formed during solidification of high temperature advanced alloys. The patterns formed are captured in 4D (3D plus time) using a methodology which exploits three separate advances: a bespoke high temperature environment cell; the development of high X-ray contrast alloys; and a novel environmental encapsulation system. This methodology is demonstrated on Ni, Fe, and Co advanced alloy systems, revealing dendritic pattern formation. We present detailed quantification of microstructural pattern evolution in a novel high attenuation contrast Co-Hf alloy, including microstructural patterning and dendrite tip velocity. The images are quantified to provide 4D experimental data of growth and coarsening mechanisms in Co alloys, which are used for a range of applications from energy to aerospace

    Role of the local stress systems on microstructural inhomogeneity during semisolid injection

    Get PDF
    High pressure metal die casting is an extremely dynamic process with widely ranging cooling rates and intensifying pressures, resulting in a wide range of solid fractions and deformation rates simultaneously existing in the same casting. These process parameters and their complex interplay dictate the formation of microstructural solidification defects. In this study, fast synchrotron X-ray imaging experiments simulating high pressure die casting of aluminium alloys were conducted to investigate the effect of solid fraction, loading conditions and semisolid flow on local microstructural inhomogeneity. While most of the existing literature in this field reports speeds up to 10 µm/s for in situ deformation, the present work captures much faster filling and solidification, at speeds closer to 100 µm/s and at different solid fractions. Semisolid deformation of low solid fractions reveals two typical microstructural features: (i) coarser grains in the middle and finer ones near the walls, and (ii) remelting near the solid-liquid interface due to Cu enrichment in the liquid by the flow. Ex situ scans and digital image correlation analysis of the higher solid fraction samples reveal a porosity formation mechanism based on the local state of stresses, microstructure and feeding. Four different characteristics were identified: (i) plug flow, (ii) dead zone (densified mush), (iii) shear and (iv) bulk zones. These insights will be used to develop zone-specific strategies for the numerical modelling of defect formation during die casting
    corecore