235 research outputs found

    Heavy-Fermions in LiV2O4: Kondo-Compensation vs. Spin-Liquid Behavior?

    Full text link
    7Li NMR measurements were performed in the metallic spinel LiV2O4. The temperature dependencies of the line width, the Knight shift and the spin-lattice relaxation rate were investigated in the temperature range 30 mK < T < 280 K. For temperatures T < 1 K we observe a spin-lattice relaxation rate which slows down exponentially. The NMR results can be explained by a spin-liquid behavior and the opening of a spin gap of the order 0.6 K

    Hierarchical self-entangled carbon nanotube tube networks

    Get PDF
    R.A. gratefully acknowledges partial project funding by the Deutsche Forschungsgemeinschaft (DFG) contract AD183-17-1 as well as in the framework of the GRK 2154 and FOR 1616, and support from the European Comission in the framework of the Graphene FET Flagship. N.M.P. is supported by the European Research Council ERC PoC 2015 SILKENE No. 693670 and by the European Commission H2020 under the Graphene FET Flagship (WP14 “Polymer Composites” No. 696656) and under the FET proactive (“Neurofibres” No. 732344). S.S. acknowledges financial support from SILKENE. This work was partly supported by the Leverhulme Trust project CARBTRIB to S.N.G. We acknowledge financial support by Land Schleswig Holstein within the funding program “Open Access Publikationsfonds”. Furthermore, we thank Heather Cavers for proofreading and correcting the manuscript

    Protein kinase Ymr291w/Tda1 is essential for glucose signaling in Saccharomyces cerevisiae on the level of hexokinase isoenzyme ScHxk2 phosphorylation

    Get PDF
    The enzyme ScHxk2 of Saccharomyces cerevisiae is a dual-function hexokinase that besides its catalytic role in glycolysis is involved in the transcriptional regulation of glucose-repressible genes. Relief from glucose repression is accompanied by the phosphorylation of the nuclear fraction of ScHxk2 at serine 15 and the translocation of the phosphoenzyme into the cytosol. Different studies suggest different serine/threonine protein kinases, Ymr291w/Tda1 or Snf1, to accomplish ScHxk2-S15 phosphorylation. The current paper provides evidence that Ymr291w/Tda1 is essential for that modification while protein kinases Ydr477w/Snf1, Ynl307c/Mck1, Yfr014c/Cmk1 and Ykl126w/Ypk1, which co-purified during Ymr291w/Tda1 tandem affinity purification, as well as protein kinases PKA and PKB homolog Sch9 are dispensable. Taking into account the detection of a significantly higher amount of the Ymr291w/Tda1 protein in cells grown in low-glucose media as compared to a high-glucose environment, Ymr291w/Tda1 is likely to contribute to glucose signaling in Saccharomyces cerevisiae on the level of ScHxk2-S15 phosphorylation in a situation of limited external glucose availability. The evolutionary conservation of amino acid residue serine 15 in yeast hexokinases and its phosphorylation is illustrated by the finding that YMR291W/TDA1 of Saccharomyces cerevisiae and the homologous KLLA0A09713 gene of Kluyveromyces lactis allow for cross-complementation of the respective protein kinase single-gene deletion strains

    Staggered magnetism in LiV2_2O4_4 at low temperatures probed by the muon Knight shift

    Full text link
    We report on the muon Knight shift measurement in single crystals of LiV2O4. Contrary to what is anticipated for the heavy-fermion state based on the Kondo mechanism, the presence of inhomogeneous local magnetic moments is demonstrated by the broad distribution of the Knight shift at temperatures well below the presumed "Kondo temperature" (T30T^*\simeq 30 K). Moreover, a significant fraction (10\simeq10 %) of the specimen gives rise to a second component which is virtually non-magnetic. These observations strongly suggest that the anomalous properties of LiV2O4 originates from frustration of local magnetic moments.Comment: 11 pages, 5 figures, sbmitted to J. Phys.: Cond. Mat

    Fluorescence Correlation Spectroscopy Monitors the Fate of Degradable Nanocarriers in the Blood Stream

    Get PDF
    [Image: see text] The use of nanoparticles as carriers to deliver pharmacologically active compounds to specific parts of the body via the bloodstream is a promising therapeutic approach for the effective treatment of various diseases. To reach their target sites, nanocarriers (NCs) need to circulate in the bloodstream for prolonged periods without aggregation, degradation, or cargo loss. However, it is very difficult to identify and monitor small-sized NCs and their cargo in the dense and highly complex blood environment. Here, we present a new fluorescence correlation spectroscopy-based method that allows the precise characterization of fluorescently labeled NCs in samples of less than 50 μL of whole blood. The NC size, concentration, and loading efficiency can be measured to evaluate circulation times, stability, or premature drug release. We apply the new method to follow the fate of pH-degradable fluorescent cargo-loaded nanogels in the blood of live mice for periods of up to 72 h

    Metal-insulator transition in the two-orbital Hubbard model at fractional band fillings: Self-energy functional approach

    Full text link
    We investigate the infinite-dimensional two-orbital Hubbard model at arbitrary band fillings. By means of the self-energy functional approach, we discuss the stability of the metallic state in the systems with same and different bandwidths. It is found that the Mott insulating phases are realized at commensurate band fillings. Furthermore, it is clarified that the orbital selective Mott phase with one orbital localized and the other itinerant is stabilized even at fractional band fillings in the system with different bandwidths.Comment: 7 pages, 10 figure

    Stability of a metallic state in the two-orbital Hubbard model

    Full text link
    Electron correlations in the two-orbital Hubbard model at half-filling are investigated by combining dynamical mean field theory with the exact diagonalization method. We systematically study how the interplay of the intra- and inter-band Coulomb interactions, together with the Hund coupling, affects the metal-insulator transition. It is found that if the intra- and inter-band Coulomb interactions are nearly equal, the Fermi-liquid state is stabilized due to orbital fluctuations up to fairly large interactions, while the system is immediately driven to the Mott insulating phase away from this condition. The effects of the isotropic and anisotropic Hund coupling are also addressed.Comment: 7 pages, 9 figure

    High-field magnetization of the 3d heavy-fermion system LiV2_2O4d_{4-d} (d = 0, 0.08)

    Full text link
    Metamagnetic behavior has been observed in LiV2O4 powder sample around 38 T at 4.2 K. On the other hand, magnetization for oxygen deficient LiV2O3.92 shows no indication of metamagnetism up to 40 T, and shows substantially reduced magnetic moment compared to that of LiV2O4. These results suggest that ferromagnetic interaction is strongly enhanced by magnetic fields in LiV2O4, whereas antiferromagnetic interaction is dominant in LiV2O3.92.Comment: 9 pages, 3 figures, to be published in J. Phys.: Condens. Matte
    corecore