57 research outputs found

    Covalently Binding the Photosystem I to Carbon Nanotubes

    Full text link
    We present a chemical route to covalently couple the photosystem I (PS I) to carbon nanotubes (CNTs). Small linker molecules are used to connect the PS I to the CNTs. Hybrid systems, consisting of CNTs and the PS I, promise new photo-induced transport phenomena due to the outstanding optoelectronic properties of the robust cyanobacteria membrane protein PS I

    Electrical control of spontaneous emission and strong coupling for a single quantum dot

    Get PDF
    We report the design, fabrication and optical investigation of electrically tunable single quantum dot - photonic crystal defect nanocavities operating in both the weak and strong coupling regimes of the light matter interaction. Unlike previous studies where the dot-cavity spectral detuning was varied by changing the lattice temperature, or by the adsorption of inert-gases at low temperatures, we demonstrate that the quantum confined Stark effect can be employed to quickly and reversibly switch the dot-cavity coupling simply by varying a gate voltage. Our results show that exciton transitions from individual dots can be tuned by ~4 meV relative to the nanocavity mode before the emission quenches due to carrier tunneling escape. This range is much larger than the typical linewidth of the high-Q cavity modes (~0.10 meV) allowing us to explore and contrast regimes where the dots couple to the cavity or decay by spontaneous emission into the 2D photonic bandgap. In the weak coupling regime, we show that the dot spontaneous emission rate can be tuned using a gate voltage, with Purcell factors >=7. New information is obtained on the nature of the dot-cavity coupling in the weak coupling regime and electrical control of zero dimensional polaritons is demonstrated for the highest-Q cavities (Q>=12000). Vacuum Rabi splittings up to ~0.13 meV are observed, much larger than the linewidths of either the decoupled exciton or cavity mode. These observations represent a voltage switchable optical non-linearity at the single photon level, paving the way towards on-chip dot based nano-photonic devices that can be integrated with passive optical components

    A Correlation between the Emission Intensity of Self-Assembled Germanium Islands and the Quality Factor of Silicon Photonic Crystal Nanocavities

    Get PDF
    We present a comparative micro-photoluminescence study of the emission intensity of self-assembled germanium islands coupled to the resonator mode of two-dimensional silicon photonic crystal defect nanocavities. The emission intensity is investigated for cavity modes of L3 and Hexapole cavities with different cavity quality factors. For each of these cavities many nominally identical samples are probed to obtain reliable statistics. As the quality factor increases we observe a clear decrease in the average mode emission intensity recorded under comparable optical pumping conditions. This clear experimentally observed trend is compared with simulations based on a dissipative master equation approach that describes a cavity weakly coupled to an ensemble of emitters. We obtain evidence that reabsorption of photons emitted into the cavity mode is responsible for the observed trend. In combination with the observation of cavity linewidth broadening in power dependent measurements, we conclude that free carrier absorption is the limiting effect for the cavity mediated light enhancement under conditions of strong pumping.Comment: 8 pages, 5 figure

    Emitters of NN-photon bundles

    Get PDF
    We propose a scheme based on the coherent excitation of a two-level system in a cavity to generate an ultrabright CW and focused source of quantum light that comes in groups (bundles) of NN photons, for an integer NN tunable with the frequency of the exciting laser. We define a new quantity, the \emph{purity} of NN-photon emission, to describe the percentage of photons emitted in bundles, thus bypassing the limitations of Glauber correlation functions. We focus on the case 1≤N≤31\le N\le3 and show that close to 100% of two-photon emission and 90% of three-photon emission is within reach of state of the art cavity QED samples. The statistics of the bundles emission shows that various regimes---from NN-photon lasing to NN-photon guns---can be realized. This is evidenced through generalized correlation functions that extend the standard definitions to the multi-photon level.Comment: Introduce the n-th order N-photon correlation functions. Reorganized to emphasize the N-photon emitter, now extended to the antibunching regime, rather than only coherent emission as previsoul

    Direct measurement of plasmon propagation lengths on lithographically defined metallic waveguides on GaAs

    Full text link
    We present optical investigations of rectangular surface plasmon polariton waveguides lithographically defined on GaAs substrates. The plasmon propagation length is directly determined using a confocal microscope, with independent polarization control in both excitation and detection channels. Surface plasmon polaritons are launched along the waveguide using a lithographically defined defect at one end. At the remote end of the waveguide they scatter into the far-field, where they are imaged using a CCD camera. By monitoring the length dependence of the intensity of scattered light from the waveguide end, we directly extract the propagation length, obtaining values ranging from LSPP = 10-40 {\mu}m depending on the waveguide width (w=2-5 {\mu}m) and excitation wavelength (760-920 nm). Results are in good accord with theoretical expectations demonstrating the high quality of the lithographically defined structures. The results obtained are of strong relevance for the development of future semiconductor based integrated plasmonic technologies

    Atomistic defect states as quantum emitters in monolayer MoS2_2

    Full text link
    Quantum light sources in solid-state systems are of major interest as a basic ingredient for integrated quantum device technologies. The ability to tailor quantum emission through deterministic defect engineering is of growing importance for realizing scalable quantum architectures. However, a major difficulty is that defects need to be positioned site-selectively within the solid. Here, we overcome this challenge by controllably irradiating single-layer MoS2_{2} using a sub-nm focused helium ion beam to deterministically create defects. Subsequent encapsulation of the ion bombarded MoS2_{2} flake with high-quality hBN reveals spectrally narrow emission lines that produce photons at optical wavelengths in an energy window of one to two hundred meV below the neutral 2D exciton of MoS2_{2}. Based on ab-initio calculations we interpret these emission lines as stemming from the recombination of highly localized electron-hole complexes at defect states generated by the helium ion bombardment. Our approach to deterministically write optically active defect states in a single transition metal dichalcogenide layer provides a platform for realizing exotic many-body systems, including coupled single-photon sources and exotic Hubbard systems.Comment: Main: 9 pages, 3 figures + SI: 19 pages, 10 figure
    • …
    corecore