518 research outputs found

    TOWARDS HIGH RESOLUTION FEATURE MAPPNG WITH SENTINEL-2 IMAGES

    Get PDF
    High resolution feature mapping from medium resolution imageries gained special attention among remote sensing user community with the launch of Copernicus’ Sentinel-2 mission due to its capability to provide global coverage with relatively high revisit time at no cost. In this paper, we have examined and evaluated the potential of high resolution (2.5m) feature mapping from Sentinel-2 imageries with the aid of artificial intelligence. Generative adversarial network (GAN) is used as single image super resolution (SISR) technology in this study. And SPOT satellite imageries are used as corresponding high-resolution images. From qualitative and quantitative analysis of the experimental results found that spectral quality of the generated images is adequate for remote sensing applications. In conclusion, high resolution feature mapping from Sentinel-2 images found to be feasible to a greater extent for remote sensing applications

    Prominin-1 Modulates Rho/ROCK-Mediated Membrane Morphology and Calcium-Dependent Intracellular Chloride Flux

    Get PDF
    Membrane morphology is an important structural determinant as it reflects cellular functions. The pentaspan membrane protein Prominin-1 (Prom1/CD133) is known to be localised to protrusions and plays a pivotal role in migration and the determination of cellular morphology; however, the underlying mechanism of its action have been elusive. Here, we performed molecular characterisation of Prom1, focussing primarily on its effects on cell morphology. Overexpression of Prom1 in RPE-1 cells triggers multiple, long, cholesterol-enriched fibres, independently of actin and microtubule polymerisation. A five amino acid stretch located at the carboxyl cytosolic region is essential for fibre formation. The small GTPase Rho and its downstream Rho-associated coiled-coil-containing protein kinase (ROCK) are also essential for this process, and active Rho colocalises with Prom1 at the site of initialisation of fibre formation. In mouse embryonic fibroblast (MEF) cells we show that Prom1 is required for chloride ion efflux induced by calcium ion uptake, and demonstrate that fibre formation is closely associated with chloride efflux activity. Collectively, these findings suggest that Prom1 affects cell morphology and contributes to chloride conductance

    LRRK2 but not ATG16L1 is associated with Paneth cell defect in Japanese Crohn\u27s disease patients

    Get PDF
    BACKGROUND. Morphological patterns of Paneth cells are a prognostic biomarker in Western Crohn’s disease (CD) patients, and are associated with autophagy-associated ATG16L1 and NOD2 variants. We hypothesized that genetic determinants of Paneth cell phenotype in other ethnic CD cohorts are distinct but also involved in autophagy. METHODS. We performed a hypothesis-driven analysis of 56 single nucleotide polymorphisms (SNPs) associated with CD susceptibility or known to affect Paneth cell function in 110 Japanese CD patients who underwent ileal resection. We subsequently performed a genome-wide association analysis. Paneth cell phenotype was determined by defensin-5 immunofluorescence. Selected genotype–Paneth cell defect correlations were compared to a Western CD cohort (n = 164). RESULTS. The average percentage of abnormal Paneth cells in Japanese CD was similar to Western CD (P = 0.87), and abnormal Paneth cell phenotype was also associated with early recurrence (P = 0.013). In contrast to Western CD, ATG16L1 T300A was not associated with Paneth cell defect in Japanese CD (P = 0.20). Among the 56 selected SNPs, only LRRK2 M2397T showed significant association with Paneth cell defect (P = 3.62 × 10(–4)), whereas in the Western CD cohort it was not (P = 0.76). Pathway analysis of LRRK2 and other candidate genes with P less than 5 × 10(–4) showed connections with known CD susceptibility genes and links to autophagy and TNF-α networks. CONCLUSIONS. We found dichotomous effects of ATG16L1 and LRRK2 on Paneth cell defect between Japanese and Western CD. Genes affecting Paneth cell phenotype in Japanese CD were also associated with autophagy. Paneth cell phenotype also predicted prognosis in Japanese CD. FUNDING. Helmsley Charitable Trust, Doris Duke Foundation (grant 2014103), Japan Society for the Promotion of Science (KAKENHI grants JP15H04805 and JP15K15284), Crohn’s and Colitis Foundation grant 274415, NIH (grants 1R56DK095820, K01DK109081, and UL1 TR000448)

    Vaspin Is an Adipokine Ameliorating ER Stress in Obesity as a Ligand for Cell-Surface GRP78/MTJ-1 Complex

    Get PDF
    It is unknown whether adipokines derived from adipose tissues modulate endoplasmic reticulum (ER) stress induced in obesity. Here, we show that visceral adipose tissue-derived serine protease inhibitor (vaspin) binds to cell-surface 78-kDa glucose-regulated protein (GRP78), which is recruited from ER to plasma membrane under ER stress. Vaspin transgenic mice were protected from diet-induced obesity, glucose intolerance, and hepatic steatosis, while vaspin-deficient mice developed glucose intolerance associated with upregulation of ER stress markers. With tandem affinity tag purification using HepG2 cells, we identified GRP78 as an interacting molecule. The complex formation of vaspin, GRP78, and murine tumor cell DnaJ-like protein 1 (MTJ-1) (DnaJ homolog, subfamily C, member 1) on plasma membrane was confirmed by cell-surface labeling with biotin and immunoprecipitation in liver tissues and H-4-II-E-C3 cells. The addition of recombinant human vaspin in the cultured H-4-II-E-C3 cells also increased the phosphorylation of Akt and AMP-activated protein kinase (AMPK) in a dose-dependent manner, and anti-GRP78 antibodies completely abrogated the vaspin-induced upregulation of pAkt and pAMPK Vaspin is a novel ligand for cell-surface GRP78/MTJ-1 complex, and its subsequent signals exert beneficial effects on ER stress-induced metabolic dysfunctions. Diabetes 61:2823-2832, 201

    Nanostructured AgBr loaded TiO2: An efficient sunlight active photocatalyst for degradation of Reactive Red 120

    Get PDF
    The AgBr loaded TiO2 catalyst was prepared by a feasible approach with AgBr and tetraisopropyl orthotitanate and characterized by BET surface area measurement, diffuse reflectance spectra (DRS), scanning electron microscope (SEM), energy dispersive spectra (EDS), X-ray diffraction (XRD), transmission electron microscope (TEM) and atomic force microscope (AFM) analysis. The results of characterization reveal that AgBr loaded TiO2 has a nanostructure. Formation of the nanostructure in AgBr loaded TiO2 results in substantial shifting of the absorption edge of TiO2 to red and enhancement of visible light absorption. Electrochemical impedance spectroscopy measurements reveal that AgBr loaded TiO2 has a higher photoconductivity than prepared TiO2 due to higher separation efficiency of electron-hole pairs. Cyclic voltammetric studies reveal enhanced conductivity in AgBr loaded TiO2, which causes an increase in its photocatalytic activity. AgBr loaded TiO2 exhibited a higher photocatalytic activity than TiO2-P25 and prepared TiO2 in the photodegradation of Reactive Red 120 (RR 120)

    Calcified Plaques in Patients With Acute Coronary Syndromes

    Get PDF
    OBJECTIVES: This study conducted detailed analysis of calcified culprit plaques in patients with acute coronary syndromes (ACS). BACKGROUND: Calcified plaques as an underlying pathology in patients with ACS have not been systematically studied. METHODS: From 1,241 patients presenting with ACS who had undergone pre-intervention optical coherence tomography imaging, 157 (12.7%) patients were found to have a calcified plaque at the culprit lesion. Calcified plaque was defined as a plaque with superficial calcification at the culprit site without evidence of ruptured lipid plaque. RESULTS: Three distinct types were identified: eruptive calcified nodules, superficial calcific sheet, and calcified protrusion (prevalence of 25.5%, 67.4%, and 7.1%, respectively). Eruptive calcified nodules were frequently located in the right coronary arteries (44.4%), whereas superficial calcific sheet was most frequently found in the left anterior descending coronary arteries (68.4%) (p = 0.012). Calcification index (mean calcification arc × calcification length) was greatest in eruptive calcified nodules, followed by superficial calcific sheet, and smallest in calcified protrusion (median 3,284.9 [interquartile range (IQR): 2,113.3 to 5,385.3] vs. 1,644.3 [IQR: 1,012.4 to 3,058.7] vs. 472.5 [IQR: 176.7 to 865.2]; p < 0.001). The superficial calcific sheet group had the highest peak post-intervention creatine kinase values among the groups (eruptive calcified nodules vs. superficial calcific sheet vs. calcified protrusion: 241 [IQR: 116 to 612] IU/l vs. 834 [IQR: 141 to 3,394] IU/l vs. 745 [IQR: 69 to 1,984] IU/l; p = 0.032). CONCLUSIONS: Three distinct types of calcified culprit plaques are identified in patients with ACS. Superficial calcific sheet, which is frequently located in the left anterior descending coronary artery, is the most prevalent type and is also associated with greatest post-intervention myocardial damage. (Identification of Predictors for Coronary Plaque Erosion in Patients With Acute Coronary Syndrome; NCT03479723).status: publishe
    corecore