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ABSTRACT: 

 

High resolution feature mapping from medium resolution imageries gained special attention among remote sensing user community 

with the launch of Copernicus’ Sentinel-2 mission due to its capability to provide global coverage with relatively high revisit time at 

no cost. In this paper, we have examined and evaluated the potential of high resolution (2.5m) feature mapping from Sentinel-2 

imageries with the aid of artificial intelligence. Generative adversarial network (GAN) is used as single image super resolution (SISR) 

technology in this study. And SPOT satellite imageries are used as corresponding high-resolution images. From qualitative and 

quantitative analysis of the experimental results found that spectral quality of the generated images is adequate for remote sensing 

applications. In conclusion, high resolution feature mapping from Sentinel-2 images found to be feasible to a greater extent for remote 

sensing applications. 

 

1. INTRODUCTION 

Sentinel-2 satellite mission developed within Copernicus 

program is a joint initiative of European Space Agency, European 

environment agency and the European commission in order to 

provide operational information of earth for environmental 

applications (Romeo et al., 2020). With the launch of Sentinel-

2A satellite in 2015 it gained special attention of remote sensing 

community due to its open data distribution policy. Its popularity 

further extended with the launch of Sentinel 2B due to its high 

spectral resolution, global coverage, and relatively high revisit 

time. Since then, Sentinel-2 is an indispensable data source for 

larger scale studies. Sentinel-2 provides 13 spectral bands 

ranging from shortwave infrared to visible (Table 1).    

 
Band Central Wavelength  Resolution  

Band1: Coastal Aerosol 443.0 nm 60.0 m 

Band 2: Blue 490.0 nm 10.0 m 

Band 3: Green 560.0 nm 10.0 m 

Band 4: Red 665.0 nm 10.0 m 

Band 5:  VR Edge 705.0 nm 20.0 m 

Band 6:  VR Edge 740.0 nm 20.0 m 

Band 7: VR Edge 783.0 nm 20.0 m 

Band 8:  NIR 842.0 nm 10.0 m 

Band 8A: VR Edge 865.0 nm 20.0 m 

Band 9: Water Vapour 945.0 nm 60.0 m 

Band 10 – SWIR 1375.0 nm 60.0 m 

Band 11-SWIR-Cirrus 1610.0 nm 20.0 m 

Band 12 - SWIR 2190.0 nm 20.0 m 

Table 1. Sentinel-2 image spectral band specifications. 

 

Among them red (R), green (G), blue (B) and near infrared (NIR) 

bands have the highest ground resolution of 10m. However, even 

the spatial details (Figure 1) in those bands are not adequate for 

post processing applications such as damage detection or feature 

extraction. Therefore, the resolution improvement of Sentinel-2 

(S2) images got special attention considering the cost 

accompanied with the high resolution (HR) images for 

aforementioned applications and disaster mapping (e.g., 

flooding, landslides) in large scale. Moreover, the recent 

advancements in deep neural networks emphasized the potential 

of resolution improvement when pan sharpening techniques are 

not supportive due to unavailability of the panchromatic bands. 

 

Available single image super resolution (SISR) techniques for S2 

imageries are limited to conventional interpolation methods and 

different network architectures from standard convolutional 

neural networks generative adversarial networks (GANs). 

Among the neural network-based methods, GAN based methods 

got least attention due to concerns over spectral distortions of 

generated images (Kapilaratne et al., 2022). However, several 

recent studies (Romeo et al., 2020; Galar et al., 2019; Mehmood, 

2019) have been attempted to examine the applicability of GAN 

based methods for resolution improvements in remote sensing 

imageries where adequate attention has not been given to the 

applicability of the generated images for remote sensing 

applications. Therefore, this study investigated and examined 

potential of the GAN based super resolution model as a resolution 

enhancement method (by 4 folds) for remote sensing applications 

with special emphasis on disaster monitoring. 

 

 
 

Figure 1. (a) SPOT6 image taken on 2021/02/28 with ground 

resolution (GR) 0.3m (b) respective S2 image taken at same 

location on 2021/02/13 with 10.0m GR. 

 

1.1 Single Image Super Resolution Using GAN Models 

The main idea of GAN-based SISR is to train a generator network 

to produce HR images from low resolution (LR) inputs, while a 

discriminator network is trained to distinguish between real HR 

images and those generated by the generator network (Figure 2). 

This process leads to the generator network learning to produce 

(a) (b) 
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images that are visually similar to real HR images, resulting in 

high quality image super resolution. 

 

In general, GAN-based SISR methods have been shown to 

outperform traditional interpolation-based methods in terms of 

both visual quality and quantitative performance measures such 

as Peak Signal to Noise Ratio (PSNR) and Structural Similarity 

Index (SSIM). Moreover, GAN- based SISR methods have the 

ability to generate diverse HR images for a given LR input, which 

makes them more suitable for various applications such as image 

restoration, satellite and medical image processing.  

 

 
 

Figure 2. Overview of the generative adversarial networks 

 

This study is the second communication of series of studies to 

develop generalized SISR technique based on GAN models for 

resolution improvements without degrading the quality and value 

of the satellite imageries. During the first phase (Kapilaratne et 

al., 2022), authors have examined the potential of GAN based 

super resolution model Enhanced Super Resolution Generative 

Adversarial Network (ESRGAN) for resolution improvements 

without degrading the quality and value of satellite imageries. 

Where only WV3 images were used for both HR and LR images. 

The main objective was to examine and evaluate the capabilities 

of the model to restore the original resolution images from the 

down sampled images with minimal impact to its remote sensing 

value. Due to limitation with available data samples for model 

training, model capabilities to super resolve S2 images were 

unable to examine with WV3 and S2 image pairs. Further, the 

qualitative and quantitative evaluation was mainly focused on the 

overall performance of the generated image with respect to the 

corresponding original HR image where the detailed spectral 

quality analysis was not carried out. 

  

Therefore, the main focus of this second phase is to investigate 

the applicability of ESRGAN model as a general method to super 

resolve S2 images for remote sensing applications. Two 

experiments were designed to evaluate the model performance on 

true colour (TC) and false colour (FC) images. Where, the TC 

images prepared with Red, Green and Blue bands assigned to 

RGB layers and FC images with assigning Red, Green and NIR 

bands to aforementioned layers. Through these experiments 

authors expected to cater a broader remote sensing user 

community for comprehensive analysis using largest earth 

observation satellite data sets available at no cost with special 

emphasis on disaster mapping.       

 

2. MATERIALS AND METHODS 

2.1 Network Architecture 

As mentioned in the above section this study adopted the GAN 

(Goodfellow et al., (2016)) based ESRGAN (Xintao et al., 2018) 

model due to its novelty and proven success. As the name depicts 

ESRGAN is an enhanced version of super resolution generative 

adversarial network (SRGAN) by means of network architecture, 

adversarial and the perceptual loss. As per the original paper, 

through those advancements ESRGAN model able to overcome 

the prominent blurring effects found at images super resolved 

through SRGAN model.   

 

2.2 Datasets and Study Area 

SPOT satellite data is used as the HR counterpart to super resolve 

S2 images considering the closeness of the central wavelengths 

(Table 2) of two satellite sensors in comparison to other HR 

options such as WV3 or Pleiades images. 

 

Band SPOT 6/7 (nm) WV3 (nm) Sentinel-2 (nm) 

Red 660[4.6] 660.1 [4.5] 664.6 

Green 560 [0.2] 547.1 [12.7] 559.8 

Blue 490 [2.4] 481.9 [11.3] 492.4 

NIR 825 [7.8] 824.0 [8.8] 832.8 

Table 2. Comparison of central wavelengths of SPOT and WV3 

sensors with Sentinel-2. 

 

Both true colour experiment (TC EXP) and false colour 

experiments (FC EXP) were carried out using the listed datasets 

in Table 3. Common image samples were used for both 

experiments at training validation and testing phases in order to 

make a general conclusion about experiments. All HR and LR 

datasets used to train ESRGAN model are captured in Japan 

covering area of 589 km2. Among them 1463 image samples 

(480*480 pixels) utilized for training and validation phase with 

8:2 ratio respectively. Moreover, satellite image captured around 

Ichihara city of Chiba prefecture Japan specifically selected for 

test phase considering its zero-day lag between HR and LR 

images.  

 

Location 
Imaging date Area 

(km2) 
Usage 

SPOT Sentinel-2 

Mitaka 2019/11/12 2019/11/09 117 

Train/

Val 

Nara 2018/09/19 2018/09/28 100 

Mashiki 2020/08/18 2020/08/19 110 

Joban 2021/02/28 2021/02/13 132 

Chiba 2020/01/03 2020/01/03 130 Test 

Table3. Summary of used satellite image datasets. 
 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Selected image pair used during training and test phase 

(a) SPOT image captured around Joban express way (b) 

Corresponding S2 image (c) SPOT image observed around 

Ichihara city (d) Corresponding S2 image.  

(a) (b) 

(c) (d) 
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2.3 Network Training Dataset Preparation 

ESRGAN model is implemented as per the given guidelines in 

OpenMMLab’s MMEditing library (MMEditing Contributors) 

which is developed in PyTorch framework. Model training is 

carried out in two phases (Figure 4) considering the domain 

difference (Lanaras et al., (2018); Galar et al., (2019) and Romero 

et al., (2021)) in HR and LR image samples. Thus, for the pre-

training phase LR images with 10.0 m resolution is created from 

SPOT images in step wise manner with a factor of 2 to eliminate 

feature loss during a direct down sampling of 1.5m images 

(Figure 5). Subsequently, actual model training is commenced 

with pre-trained weights. Similar data augmentation techniques 

and learning rate has been used in this study with the phase 1 of 

this study. 

 

 
 

Figure 4. Overview of the model training phases of TC and FC 

experiments. 

 

 

 
 

Figure 5. Overview of dataset preparation for pre-train model 

with SPOT-6/7 images only.  

2.3.1 Dataset Preparation for TC and FC experiments: As 

for the actual model training dataset preparation for both TC and 

FC experiments are carried out as shown in Figure 6. At first 

unsigned 16bit SPOT images are resampled into 2.5m and 

converted into unsigned 8bit images. Thereafter image tilling was 

carried out and randomly selected train and validation image 

samples into 8:2 ratio. For the S2 images, once the images are 

converted into 8bit images, those images are tilled into 120*120 

and selected the images tiles as per the separated HR training and 

validation images. Once both HR and LR image tile selection is 

completed, TC and FC datasets were created for the experiments. 

 

 
 

Figure 6. Overview of the dataset preparation for acutal model 

training. 

 

2.4 Evaluation Methodology 

Performance is evaluated qualitatively and quantitatively. 

Qualitative evaluation is mainly focused on correctness of image 

features such as building footprints, roads, vegetation and soil 

textures etc. of generated images with respect to the 

corresponding high resolution ground truth (GT) samples. 

Following 03 spectral quality measuring indices are used for 

quantitative evaluation. Those are spectral angle mapper (SAM), 

spectral information divergence (SID) and Pearson correlation 

coefficient (CC). 

 
 

SAM(X, Y) = arccos (
𝑋. 𝑌

|𝑋|2|𝑌|2
) 

 

Where, X and Y are generated image and corresponding ground 

truth respectively.  

 

SID(x, y) = ∑ [
𝐼𝑋(𝑥, 𝑦, 𝛾𝑖)

∑ 𝐼𝑋(𝑥, 𝑦, 𝛾𝑗)𝑙
𝑗=1

𝑙

𝑖=1

−
𝐼𝑋(𝑥, 𝑦, 𝛾𝑖)

∑ 𝐼𝑋(𝑥, 𝑦, 𝛾𝑗)𝑙
𝑗=1

] [𝑙𝑜𝑔
𝐼𝑋(𝑥, 𝑦, 𝛾𝑖)

∑ 𝐼𝑋(𝑥, 𝑦, 𝛾𝑗)𝑙
𝑗=1

− 𝑙𝑜𝑔
𝐼𝑋(𝑥, 𝑦, 𝛾𝑖)

∑ 𝐼𝑋(𝑥, 𝑦, 𝛾𝑗)𝑙
𝑗=1

] 

 

Where, 

            IX : generate image 

            IY  : ground truth image 

           I(x,y,gi): spectral reflectance at pixel of image of band i 

           m*n*l: image dimensions  
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            x = 1,…,m 

            y = 1,…,n 

            gi (i= 1,…,l) 

 

In order to provide a comprehensive analysis on the usability of 

the generated images for remote sensing applications authors 

have compared scatter plots of generated images and 

corresponding GT samples along with spectral profiles on 

important land use types those can be generally found on satellite 

images. Finally, an object-based image classification, a land slide 

extraction (satellite image taken after a 2018 heavy rainfall event 

in Northern Kyushu) and an inundation extent extraction (image 

taken after 2018 heavy rainfall in Kurashiki city of Okayama 

prefecture Japan) are carried out to quantitatively evaluate the 

usability of super-resolved images for remote sensing 

applications. Support vector machine (SVM) algorithm is used as 

classification method and the pre trained UNet model with FC 

pre and post disaster Pleiades (0.5m) and WV images are used 

for land slide extraction. Flood area extraction is carried out with 

UNet model originally trained with FC SPOT6/7 images. 

 

Image classification is carried out for 05 classes including bare 

lands as most of the bare lands correspond to landslide on 

selected satellite image. As a measure of accuracy, user accuracy 

(UA) is used as it is considered as the reliability of the classified 

maps. Whereas, recall (completeness), precision (correctness) 

and F-Score is evaluated for the extracted landslides and 

inundation extents from original S2 images and corresponding 

super-resolved images. 

 

 
  

Figure 7. Description of accuracy matric notations. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃) =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

𝐹 − 𝑆𝑐𝑜𝑟𝑒 =
2𝑃𝑅

𝑃 + 𝑅
 

 
To preserve the conciseness of the manuscript quantitative results 

of the validation phase are excluded. Authors would like to 

mention that the model performance on validation phase found to 

be better than that of the test phase. Image classification, land 

slide extraction and flood mapping applications are carried out 

only on false colour images as it found to be the best band 

composition for those applications. However, other evaluation 

results are summarized on both experiments where it necessary.  

 

 

3. RESULTS AND DISCUSSION 

This section presents the model performance at validation and 

test phase. Analysis has carried out and results are summarised 

qualitatively and quantitatively as mentioned in the previous 

section. For validation phase only the qualitative results and 

analysis has been attached to preserve the conciseness of the 

manuscript.  Quantitative analysis on spectral quality assessment 

results for both FC and TC experiments are given in terms of 

mean value of the evaluation indices presented in sub section 2.4.   

 

3.1 Validation Results 

This sub section discusses the qualitative results achieved at 

validation phase of each experiment. Results are presented in 

forms of figures.  

 

3.1.1 Qualitative Analysis: The performance of trained 

models at each experiment was assessed by visually comparing 

the super resolve image output of the model with HR ground truth 

images along with LR input image.  

 

 
 

Figure 8. Validation phase results of FC EXP (a) LR S2 image 

(10.0 m) (b) Inference output (2.5 m) (c) SPOT Ground truth 

image (2.5 m). 

 

 
 

Figure 9. Validation phase results of TC EXP (a) LR S2 image 

(10.0 m) (b) Inference output (2.5 m) (c) SPOT Ground truth 

image (2.5 m). 

 

To demonstrate different perspectives, four different image tiles 

were selected for the qualitative analysis of the validation phase 

results of FC and TC experiments. From Figure 8 and 9 results it 

is obvious that the models are successfully restored HR 

information for the available details in LR images. Its relatively 

hard to differentiate the model output and the real ground truth 

image at first sight. However, when it comes to very finer details 

restoration such as solar panels from Figure 8 and sports stadium 

of Figure 9 demonstrate the models need to be further improved 

based upon user requirements. Model performance on generating 

other details such as roads, buildings and vegetation replication 

is adequately enough.  

(a) (b) (c) 

(a) (b) (c) 
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3.2 Test Results 

This study investigated the potentials of ESRGAN models for 

super resolving images by 4x. Ground resolution of S2 satellite 

image is 10.0 m. Therefore, pan sharpened SPOT images were 

down sampled into 2.5 m during data set creation. Test phase 

results are arranged in such a way that qualitative results followed 

by quantitative results. For a comprehensive analysis of spectral 

quality of the generated images with respect to the ground truth 

images, histogram analysis is also included for the corresponding 

image samples. 

 

3.2.1 Qualitative Analysis: Model performances at test phase 

were assessed by visually comparing the inference results with 

their respective ground truths. Figures 10 and 11 represent the TC 

and FC experimental results respectively. It is revealed from the 

visual inspection that both models were successful in resolving 

S2 images into SPOT level at small scale.  

 

 
 

Figure 10. Comparison of image detail enhancement through 

super resolution with TC experiment (a) LR S2 image (10.0 m) 

(b) Inference output (2.5 m) (c) SPOT Ground truth image (2.5 

m). 

 

 
Figure 11. Comparison of image detail enhancement through 

super resolution with FC experiment (a) LR S2 image (10.0 m) 

(b) Inference output (2.5 m) (c) SPOT Ground truth image (2.5 

m). 

 

Overall (Figures 10 and 11), realistic images have been generated 

with less artefacts. However, the blurring effects of buildings and 

vegetation are somewhat remained. Moreover, a noticeable 

colour tone difference has been observed with vegetation and the 

soil in generated images in TC experiment. Similar observation 

has been found with corresponding FC image samples as well. It 

is obvious that some linear features such as building footprints 

and asphalts which may sub pixel level details in original S2 

images are unable generated correctly thus, one to one feature 

comparison with corresponding ground truth samples is unlikely. 

 

From prepared scatter plots (Figure 12) with generated images 

along with respective ground truth samples found that the points 

tend to scatter slightly away from the diagonal axis when the 

majority of the image pixels are covering impervious areas. 

Whereas points tend to scatter along the diagonal axis with the 

absence of those land use pixels. For a comprehensive analysis 

on the spectral quality of generated images with respect to the 

original S2 image and corresponding HR SPOT image, spectral 

profiles for 07 selected land use categories (including built-up, 

asphalts, forest covers etc.) are created. 

 

 
 

Figure 12. Scatter plots of TC and FC experiments (scatter plots 

corresponds to image tile used in Figure 10 & 11 respectively) 

 

From Figure 13, it is observable that the comparatively higher 

spectral discrepancy obtained for built-up and asphalt classes 

while minimum is for water features and vegetation land use 

classes. Thereafter as a quantification measure of observed 

spectral discrepancies, widely used spectral quality assessment 

indices are utilized.  

      

 

 
Figure 13. Spectral profiles of selected land use types. 

 

3.2.2 Quantitative Analysis: In this section, comprehensive 

analysis with specific emphasis on spectral quality of the 

generated image was carried out. Spectral indices value of 

quantitative analysis of both TC and FC experiments are given in 

terms of mean of the indexes mentioned in the text.  

 

As a comparison measure, quantitative evaluation is carried out 

for both TC and FC experiments on categorized image tiles based 

on their key land use types (bare lands, urban lands and forest 

covers) as shown in Table 4. Image tile categorization is based 

on the thresholds (0.5) set up on normalized difference soil index 

(NDSI) and normalized difference vegetation index (NDVI) 

along with manual confirmation of the presence or the absence of 

corresponding land use types. According to the Table 4 results 

based on spectral quality indices, generated images tiles with 

vegetation and bare lands can be used for remote sensing 

analysis. However, model performance of built-up areas 

especially in true colour experiment need to be further improved 

in the context of spectral quality for safer use on remote sensing 

applications. As mentioned in the previous section validation 

phase results found to be well within the range for all 03 indices 

for safer use in remote sensing analysis. Consequently, it is 

acceptable to mention that the further model training with 

qualitatively and quantitatively improved data set may lead to a 

better performance. 

(a) (b) (c) 

(a) (b) (c) 
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Authors, believe that the observed discrepancy in geo-

rectification of S2 and SPOT images might also be contributed 

for the relatively larger spectral discrepancy in impervious area.  

 

Table 4. Spectral quality assessment with widely used spectral 

indices for TC and FC experiments. 

 

Therefore, authors realized the importance of evaluating the 

usability of generated images for remote sensing purposes 

through real world applications. Consequently, 03 feature 

extraction tasks are incorporated to this study. Subsequently, 

performances are evaluated with respect to the corresponding 

feature extraction capabilities to S2 images. 03 tested 

applications are consisting of image classification experiment 

along with 02 disaster mapping tasks. 

 

Object based classification and the landslide extraction is carried 

out using satellite image captured after Northern Kyushu heavy 

rain fall event occurred in 2018 covering Asakura city Japan. 

Support vector machine algorithm is used to classify original S2 

image (Figure 14), and corresponding super resolved (SR) 

(Figure 15) image (2.5m) for urban, water, forest, grasslands, and 

bare lands. Accuracy assessment results demonstrate that the 

super resolving process has improved the classification accuracy 

for all classes except for forest category. And a significant 

improvement is observed for bare land category which is mainly 

consists of landslides on tested image. 

 

 

 
 

Figure 14. Classification results of S2 image.  

 
 

Figure 15. Classification results of super-resolved image.  

 

Table 5. Classification accuracy assessment of Sentinel-2 (S2) 

and super resolution (SR) image. 

 

Therefore, a landslide extraction is followed by the classification 

experiment. Image taken in 2016 is used as pre-disaster image 

along with 2018 post disaster S2 image for land slide extraction. 

Pre and post disaster images of S2 and corresponding super-

resolved images were stacked respectively to perform the 

landslide extraction with pre-trained model. The used UNet 

model was pre-trained with FC pre-and post-disaster Pleiades and 

WV images.  

 

From the qualitative analysis authors found that extraction 

omission has improved through super resolving process 

particularly at narrow debris flows and some large-scale 

landslides are not properly extracted from super resolved image 

in comparison to the original S2 image (Figure 17). In accordance 

with the qualitative analysis, accuracy assessment represents the 

similar trend with lower recall and F-score and slightly improved 

precision scale (Table 6). Authors assume the performance 

reduction in super resolved image might cause due to robustness 

incompetency of the trained UNet model as well. Hence a flood 

area extraction is carried out with a trained UNet model with 

SPOT imageries. Due to 10 days lag of disaster occurrence and 

image capturing, flood water remained only on water features 

such as river and ponds. 

 

Table 6. Landslide extraction accuracy assessment of Sentinel-2 

(S2) and super resolution (SR) image. 

 

 

 

TC EXP SAM CC SID 

Bare land 0.25 0.77 0.08 

Urban land 0.31 0.76 0.19 
Forest cover 0.23 0.85 0.30 

FC EXP SAM CC SID 

Bare land 0.23 0.76 0.18 

Urban land 0.24 0.75 0.24 
Forest cover 0.22 0.87 0.22 

User Accuracy 
(%) 

Water Built-up Forest Crop 
lands  

Bare 
lands 

S2 Image 50.0 39.4 95.4 55.0 21.4 

SR Image 90.0 69.5 95.2 63.5 60.0 

 Precision (%) Recall (%) F-score (%) 

S2 image 54.0 16.0 25.0 
SR image 56.0 11.0 19.0 
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Figure 16. Original Sentinel-2 and corresponding super-resolved 

image.  

 

Figure 17. Super-resolved post-disaster S2 image with overlayed 

extracted landslides from super resolved image.  

 

 

Figure 18. Comparison of extracted flood extents from Sentinel-

2 (S2) image and Super Resolution (SR) image.  

 

 

Table 7. Flood extent extraction accuracy assessment of 

Sentinel-2 (S2) and super resolution (SR) image. 

 

From the results it is found that the flood area extraction is 

enhanced with a significant factor through the super resolving 

process. Both F-score and recall values are relatively high for the 

extracted results with super resolved image than that of original 

Sentinel-2 image. Authors consider the observed spectral 

distortions in urban landscapes in super resolved image, cloud 

cover and the 5 days’ time lag of the tested S2 image with the 

original SPOT image used to prepare the annotation might 

contributed to lower the precision of the flood mapping 

experiment. Overall, obtained mapping results demonstrate 

greater potential of ESRGAN model to super resolve S2 images 

for remote sensing applications.    

 

 

4. CONCUSIONS AND FUTURE WORK 

This contribution has examined and evaluated GAN based 

algorithm for resolution improvements of S2 imageries for high 

resolution feature mapping. With special emphasis on spectral 

quality of the generated images, SPOT imageries are used as HR 

counterpart for S2 images considering the similarities of central 

wavelengths of both sensors. In order to generalize the train 

model to be able to apply at various conditions no stricter data 

filtering criterion is incorporated except the exclusion of image 

tiles with clouds. TC and FC experiment results demonstrate that 

the spectral quality of the generated images is fairly adequate for 

widely used remote sensing applications. However, from the 

spectral quality assessment and the tested remote sensing 

applications found that the super-resolved image tiles covering 

urban landscapes need to be further improved for accurate 

mapping purposes. Moreover, authors have found that the SAM 

index relatively more sensitive to the spectral quality deviations 

on urban land uses than other two tested indices during this study. 

Therefore, it is expected to introduce aforementioned index to the 

existing perceptual loss function as a measure of spectral quality 

control of the generated images as a future perspective of this 

study. Further, authors are expected to extend the usability of the 

 Precision (%) Recall (%) F-score (%) 

S2 image 56.4 18.9 28.3 

SR image 42.6 29.6 35.0 
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model for multichannel usage and examine the usage of other 

satellite image options with original resolution is very much 

similar to the super resolved S2 imageries by four folds to 

alleviate the bias caused by the difference in level of details 

(LoD) in used HR images. 
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