34,179 research outputs found
To improve model soil moisture estimation in arid/semi-arid region using in situ and remote sensing information
Soil moisture plays a key role in water and energy exchange in the land hydrologic process. Effective soil moisture information can be used for many applications in weather and hydrological forecasting, water resources, and irrigation system management and planning. However, to accurate modeling of soil moisture variation in the soil layer is still very challenging. In this study, in situ and remote sensing information of near-surface soil moisture is assimilated into the Noah land surface model (LSM) to estimate deep-layer soil moisture variation. The sequential Monte Carlo-Particle Filter technique, being well known for capability of modeling high nonlinear and non-Gaussian processes, is applied to assimilate surface soil moisture measurement to the deep layers. The experiments were carried out over several locations over the semi-arid region of the US. Comparing with in situ observations, the assimilation runs show much improved from the control (non-assimilation) runs for estimating both soil moisture and temperature at 5-, 20-, and 50-cm soil depths in the Noah LSM. © 2012 Springer-Verlag
Recommended from our members
Bias adjustment of satellite-based precipitation estimation using artificial neural networks-cloud classification system over Saudi Arabia
Precipitation is a key input variable for hydrological and climate studies. Rain gauges can provide reliable precipitation measurements at a point of observations. However, the uncertainty of rain measurements increases when a rain gauge network is sparse. Satellite-based precipitation estimations SPEs appear to be an alternative source of measurements for regions with limited rain gauges. However, the systematic bias from satellite precipitation estimation should be estimated and adjusted. In this study, a method of removing the bias from the precipitation estimation from remotely sensed information using artificial neural networks-cloud classification system (PERSIANN-CCS) over a region where the rain gauge is sparse is investigated. The method consists of monthly empirical quantile mapping of gauge and satellite measurements over several climate zones as well as inverse-weighted distance for the interpolation of gauge measurements. Seven years (2010–2016) of daily precipitation estimation from PERSIANN-CCS was used to test and adjust the bias of estimation over Saudi Arabia. The first 6 years (2010–2015) are used for calibration, while 1 year (2016) is used for validation. The results show that the mean yearly bias is reduced by 90%, and the yearly root mean square error is reduced by 68% during the validation year. The experimental results confirm that the proposed method can effectively adjust the bias of satellite-based precipitation estimations
Recommended from our members
Toward improved hydrologic prediction with reduced uncertainty using sequential multi-model combination
The contemporary usage of hydrologic models has been to rely on a single model to perform the simulation and predictions. Despite the tremendous progress, efforts and investment put into developing more hydrologic models, there is no convincing claim that any particular model in existence is superior to other models for various applications and under all circumstances. This results to reducing the size of the plausible model space and often leads to predictions that may well-represent some phenomena or events at the expenses of others. Assessment of predictive uncertainty based on a single model is subject to statistical bias and most likely underestimation of uncertainty. This endorses the implementation of multi-model methods for more accurate estimation of uncertainty in hydrologic prediction. In this study, we present two methods for the combination of multiple model predictors using Bayesian Model Averaging (BMA) and Sequential Bayesian Model Combination (SBMC). Both methods are statistical schemes to infer a combined probabilistic prediction that possess more reliability and skill than the original model members produced by several competing models. This paper discusses the features of both methods and explains how the limitation of BMA can be overcome by SBMC. Three hydrologic models are considered and it is shown that multi-model combination can result in higher prediction accuracy than individual models. © 2008 ASCE
Rainfall frequency analysis for ungauged sites using satellite precipitation products
The occurrence of extreme rainfall events and their impacts on hydrologic systems and society are critical considerations in the design and management of a large number of water resources projects. As precipitation records are often limited or unavailable at many sites, it is essential to develop better methods for regional estimation of extreme rainfall at these partially-gauged or ungauged sites. In this study, an innovative method for regional rainfall frequency analysis for ungauged sites is presented. The new method (hereafter, this is called the RRFA-S) is based on corrected annual maximum series obtained from a satellite precipitation product (e.g., PERSIANN-CDR). The probability matching method (PMM) is used here for bias correction to match the CDF of satellite-based precipitation data with the gauged data. The RRFA-S method was assessed through a comparative study with the traditional index flood method using the available annual maximum series of daily rainfall in two different regions in USA (11 sites in Colorado and 18 sites in California). The leave-one-out cross-validation technique was used to represent the ungauged site condition. Results of this numerical application have found that the quantile estimates obtained from the new approach are more accurate and more robust than those given by the traditional index flood method
A new VLSI architecture for a single-chip-type Reed-Solomon decoder
A new very large scale integration (VLSI) architecture for implementing Reed-Solomon (RS) decoders that can correct both errors and erasures is described. This new architecture implements a Reed-Solomon decoder by using replication of a single VLSI chip. It is anticipated that this single chip type RS decoder approach will save substantial development and production costs. It is estimated that reduction in cost by a factor of four is possible with this new architecture. Furthermore, this Reed-Solomon decoder is programmable between 8 bit and 10 bit symbol sizes. Therefore, both an 8 bit Consultative Committee for Space Data Systems (CCSDS) RS decoder and a 10 bit decoder are obtained at the same time, and when concatenated with a (15,1/6) Viterbi decoder, provide an additional 2.1-dB coding gain
Recommended from our members
Investigating the impact of remotely sensed precipitation and hydrologic model uncertainties on the ensemble streamflow forecasting
In the past few years sequential data assimilation (SDA) methods have emerged as the best possible method at hand to properly treat all sources of error in hydrological modeling. However, very few studies have actually implemented SDA methods using realistic input error models for precipitation. In this study we use particle filtering as a SDA method to propagate input errors through a conceptual hydrologic model and quantify the state, parameter and streamflow uncertainties. Recent progress in satellite-based precipitation observation techniques offers an attractive option for considering spatiotemporal variation of precipitation. Therefore, we use the PERSIANN-CCS precipitation product to propagate input errors through our hydrologic model. Some uncertainty scenarios are set up to incorporate and investigate the impact of the individual uncertainty sources from precipitation, parameters and also combined error sources on the hydrologic response. Also probabilistic measure are used to quantify the quality of ensemble prediction. Copyright 2006 by the American Geophysical Union
Recommended from our members
Assessment of assimilating SMOS soil moisture information into a distributed hydrologic model
The role that soil moisture plays in terms of modulating hydrologic processes including infiltration and runoff generation makes it an essential component to capture for hydrologic modeling. This work aims to leverage information gained from SMOS to improve surface soil moisture simulations in the Russian River Basin (California, U.S.A). The basin's complex terrain offers a rigorous testing ground for SMOS soil moisture products. Data from seven in situ observation sites are used to assess model performance after assimilating SMOS-based soil saturation ratios. For a comparison of "best case" scenarios, the in situ observations themselves are assimilated. Results show that SMOS assimilated simulations shows modest improvement at most in situ locations. Despite the observed decrease in model performance at some locations, overall performance of simulations assimilated with SMOS-based saturation ratios remains high. Findings suggest that even in a complex environment, useful information may be extracted from SMOS estimates for hydrologic modeling
An object-based approach for verification of precipitation estimation
Verification has become an integral component in the development of precipitation algorithms used in satellite-based precipitation products and evaluation of numerical weather prediction models. A number of object-based verification methods have been developed to quantify the errors related to spatial patterns and placement of precipitation. In this study, an image processing technique known as watershed transformation, capable of detecting closely spaced, but separable precipitation areas, is adopted in the object-based approach. Several key attributes of the segmented precipitation objects are selected and interest values of those attributes are estimated based on the distance measurement of the estimated and reference images. An overall interest score is estimated from all the selected attributes and their interest values. The proposed object-based approach is implemented to validate satellite-based precipitation estimation against ground radar observations. The results indicate that the watershed segmentation technique is capable of separating the closely spaced local-scale precipitation areas. In addition, three verification metrics, including the object-based false alarm ratio, object-based missing ratio, and overall interest score, reveal the skill of precipitation estimates in depicting the spatial and geometric characteristics of the precipitation structure against observations
Recommended from our members
From lumped to distributed via semi-distributed: Calibration strategies for semi-distributed hydrologic models
Modeling the effect of spatial variability of precipitation and basin characteristics on streamflow requires the use of distributed or semi-distributed hydrologic models. This paper addresses a DMIP 2 study that focuses on the advantages of using a semi-distributed modeling structure. We first present a revised semi-distributed structure of the NWS SACramento Soil Moisture Accounting (SAC-SMA) model that separates the routing of fast and slow response runoff components, and thus explicitly accounts for the differences between the two components. We then test four different calibration strategies that take advantage of the strengths of existing optimization algorithms (SCE-UA) and schemes (MACS). These strategies include: (1) lumped parameters and basin averaged precipitation, (2) semi-lumped parameters and distributed precipitation forcing, (3) semi-distributed parameters and distributed precipitation forcing and (4) lumped parameters and basin averaged precipitation, modified using a priori parameters of the SAC-SMA model. Finally, we explore the value of using discharge observations at interior points in model calibration by assessing gains/losses in hydrograph simulations at the basin outlet. Our investigation focuses on two key DMIP 2 science questions. Specifically, we investigate (a) the ability of the semi-distributed model structure to improve stream flow simulations at the basin outlet and (b) to provide reasonably good simulations at interior points.The semi-distributed model is calibrated for the Illinois River Basin at Siloam Springs, Arkansas using streamflow observations at the basin outlet only. The results indicate that lumped to distributed calibration strategies (1 and 4) both improve simulation at the outlet and provide meaningful streamflow predictions at interior points. In addition, the results of the complementary study, which uses interior points during the model calibration, suggest that model performance at the outlet can be further improved by using a semi-distributed structure calibrated at both interior points and the outlet, even when only a few years of historical record are available. © 2009 Elsevier B.V
Recommended from our members
Daytime precipitation estimation using bispectral cloud classification system
Two previously developed Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) algorithms that incorporate cloud classification system (PERSIANN-CCS) and multispectral analysis (PERSIANN-MSA) are integrated and employed to analyze the role of cloud albedo from Geostationary Operational Environmental Satellite-12 (GOES-12) visible (0.65 μm) channel in supplementing infrared (10.7 mm) data. The integrated technique derives finescale (0.04° × 0.04° latitudelongitude every 30 min) rain rate for each grid box through four major steps: 1) segmenting clouds into a number of cloud patches using infrared or albedo images; 2) classification of cloud patches into a number of cloud types using radiative, geometrical, and textural features for each individual cloud patch; 3) classification of each cloud type into a number of subclasses and assigning rain rates to each subclass using a multidimensional histogram matching method; and 4) associating satellite gridbox information to the appropriate corresponding cloud type and subclass to estimate rain rate in grid scale. The technique was applied over a study region that includes the U.S. landmass east of 115°W. One reference infrared-only and three different bis-pectral (visible and infrared) rain estimation scenarios were compared to investigate the technique's ability to address two major drawbacks of infrared-only methods: 1) underestimating warm rainfall and 2) the inability to screen out no-rain thin cirrus clouds. Radar estimates were used to evaluate the scenarios at a range of temporal (3 and 6 hourly) and spatial (0.04°, 0.08°, 0.12°, and 0.24° latitude-longitude) scales. Overall, the results using daytime data during June-August 2006 indicate that significant gain over infrared-only technique is obtained once albedo is used for cloud segmentation followed by bispectral cloud classification and rainfall estimation. At 3-h, 0.04° resolution, the observed improvement using bispectral information was about 66% for equitable threat score and 26% for the correlation coefficient. At coarser 0.24° resolution, the gains were 34% and 32% for the two performance measures, respectively. © 2010 American Meteorological Society
- …