34,179 research outputs found

    To improve model soil moisture estimation in arid/semi-arid region using in situ and remote sensing information

    Get PDF
    Soil moisture plays a key role in water and energy exchange in the land hydrologic process. Effective soil moisture information can be used for many applications in weather and hydrological forecasting, water resources, and irrigation system management and planning. However, to accurate modeling of soil moisture variation in the soil layer is still very challenging. In this study, in situ and remote sensing information of near-surface soil moisture is assimilated into the Noah land surface model (LSM) to estimate deep-layer soil moisture variation. The sequential Monte Carlo-Particle Filter technique, being well known for capability of modeling high nonlinear and non-Gaussian processes, is applied to assimilate surface soil moisture measurement to the deep layers. The experiments were carried out over several locations over the semi-arid region of the US. Comparing with in situ observations, the assimilation runs show much improved from the control (non-assimilation) runs for estimating both soil moisture and temperature at 5-, 20-, and 50-cm soil depths in the Noah LSM. © 2012 Springer-Verlag

    Rainfall frequency analysis for ungauged sites using satellite precipitation products

    Get PDF
    The occurrence of extreme rainfall events and their impacts on hydrologic systems and society are critical considerations in the design and management of a large number of water resources projects. As precipitation records are often limited or unavailable at many sites, it is essential to develop better methods for regional estimation of extreme rainfall at these partially-gauged or ungauged sites. In this study, an innovative method for regional rainfall frequency analysis for ungauged sites is presented. The new method (hereafter, this is called the RRFA-S) is based on corrected annual maximum series obtained from a satellite precipitation product (e.g., PERSIANN-CDR). The probability matching method (PMM) is used here for bias correction to match the CDF of satellite-based precipitation data with the gauged data. The RRFA-S method was assessed through a comparative study with the traditional index flood method using the available annual maximum series of daily rainfall in two different regions in USA (11 sites in Colorado and 18 sites in California). The leave-one-out cross-validation technique was used to represent the ungauged site condition. Results of this numerical application have found that the quantile estimates obtained from the new approach are more accurate and more robust than those given by the traditional index flood method

    A new VLSI architecture for a single-chip-type Reed-Solomon decoder

    Get PDF
    A new very large scale integration (VLSI) architecture for implementing Reed-Solomon (RS) decoders that can correct both errors and erasures is described. This new architecture implements a Reed-Solomon decoder by using replication of a single VLSI chip. It is anticipated that this single chip type RS decoder approach will save substantial development and production costs. It is estimated that reduction in cost by a factor of four is possible with this new architecture. Furthermore, this Reed-Solomon decoder is programmable between 8 bit and 10 bit symbol sizes. Therefore, both an 8 bit Consultative Committee for Space Data Systems (CCSDS) RS decoder and a 10 bit decoder are obtained at the same time, and when concatenated with a (15,1/6) Viterbi decoder, provide an additional 2.1-dB coding gain

    An object-based approach for verification of precipitation estimation

    Get PDF
    Verification has become an integral component in the development of precipitation algorithms used in satellite-based precipitation products and evaluation of numerical weather prediction models. A number of object-based verification methods have been developed to quantify the errors related to spatial patterns and placement of precipitation. In this study, an image processing technique known as watershed transformation, capable of detecting closely spaced, but separable precipitation areas, is adopted in the object-based approach. Several key attributes of the segmented precipitation objects are selected and interest values of those attributes are estimated based on the distance measurement of the estimated and reference images. An overall interest score is estimated from all the selected attributes and their interest values. The proposed object-based approach is implemented to validate satellite-based precipitation estimation against ground radar observations. The results indicate that the watershed segmentation technique is capable of separating the closely spaced local-scale precipitation areas. In addition, three verification metrics, including the object-based false alarm ratio, object-based missing ratio, and overall interest score, reveal the skill of precipitation estimates in depicting the spatial and geometric characteristics of the precipitation structure against observations
    corecore