807 research outputs found
Recommended from our members
Choice of steel for the ISABELLE magnet tubes
It is concluded that the low temperature ductility of cast duplex stainless steels can be reduced by high ferrite content, excessive amounts of nitrogen or strong carbide forming elements, and lack of heat treatment particularly at higher ferrite levels. While all samples investigated, with the exception of No. 14 (non-heat treated 12% delta), had mechanical properties more than adequate for the intended service, it was felt advisable to modify the specifications for the tube steels. The requirement is for CF8 as per ASTM specification number A743 with the following modifications: nitrogen content must not exceed 0.08%; niobium content must not exceed 0.1% and total of all carbide formers (Nb, Ti, V, W) must not exceed 0.2%; ferrite content of the casting, as determined from the heat chemistry using the DeLong diagram, must not exceed 10%. A743 already calls for suitable solution heat treatment
Current percolation and anisotropy in polycrystalline MgB
The influence of anisotropy on the transport current in MgB
polycrystalline bulk samples and wires is discussed. A model for the critical
current density is proposed, which is based on anisotropic London theory, grain
boundary pinning and percolation theory. The calculated currents agree
convincingly with experimental data and the fit parameters, especially the
anisotropy, obtained from percolation theory agree with experiment or
theoretical predictions.Comment: 5 pages, accepted for publication in Physical Review Letters
(http://prl.aps.org/
Patients' attitudes and perceptions towards treatment of hypothyroidism in general practice: an in-depth qualitative interview study
Background Suboptimal thyroid hormone replacement is common in patients with hypothyroidism and the behavioural factors underlying this are poorly understood.
Aim To explore the attitudes and perceptions of patients to thyroid hormone replacement therapy.
Design & setting An in-depth qualitative interview study with patients with hypothyroidism residing in Northumberland, and Tyne and Wear, UK.
Method Twenty-seven patients participated, of which 15 patients had thyroid stimulating hormone (TSH) levels within the reference range (0.4–4.0 mU/L) and 12 patients had TSH levels outside the reference range. A grounded theory approach was used to explore and develop emerging themes, which were mapped to the health belief model (HBM).
Results Patients generally had a low understanding of their condition or of the consequences of suboptimal thyroid hormone replacement. Patients that had experienced hypothyroid symptoms at initial diagnosis had a better perception of disease susceptibility, and this was reflected in excellent adherence to levothyroxine in this group of patients. The main benefits of optimal thyroid replacement were improved wellbeing and performance. However, patients who remained unwell despite a normal serum TSH level felt that their normal result presented a barrier to further evaluation of their symptoms by their GP
Fast diffusion of a Lennard-Jones cluster on a crystalline surface
We present a Molecular Dynamics study of large Lennard-Jones clusters
evolving on a crystalline surface. The static and the dynamic properties of the
cluster are described. We find that large clusters can diffuse rapidly, as
experimentally observed. The role of the mismatch between the lattice
parameters of the cluster and the substrate is emphasized to explain the
diffusion of the cluster. This diffusion can be described as a Brownian motion
induced by the vibrationnal coupling to the substrate, a mechanism that has not
been previously considered for cluster diffusion.Comment: latex, 5 pages with figure
Atomistic modelling of large-scale metal film growth fronts
We present simulations of metallization morphologies under ionized sputter
deposition conditions, obtained by a new theoretical approach. By means of
molecular dynamics simulations using a carefully designed interaction
potential, we analyze the surface adsorption, reflection, and etching reactions
taking place during Al physical vapor deposition, and calculate their relative
probability. These probabilities are then employed in a feature-scale
cellular-automaton simulator, which produces calculated film morphologies in
excellent agreement with scanning-electron-microscopy data on ionized sputter
deposition.Comment: RevTeX 4 pages, 2 figure
Antecedents and consequences of effectuation and causation in the international new venture creation process
The selection of the entry mode in an international market is of key importance for the venture. A process-based perspective on entry mode selection can add to the International Business and International Entrepreneurship literature. Framing the international market entry as an entrepreneurial process, this paper analyzes the antecedents and consequences of causation and effectuation in the entry mode selection. For the analysis, regression-based techniques were used on a sample of 65 gazelles. The results indicate that experienced entrepreneurs tend to apply effectuation rather than causation, while uncertainty does not have a systematic influence. Entrepreneurs using causation-based international new venture creation processes tend to engage in export-type entry modes, while effectuation-based international new venture creation processes do not predetermine the entry mod
Strongly linked current flow in polycrystalline forms of the new superconductor MgB2
The discovery of superconductivity at 39 K in MgB2[1] raises many issues. One
of the central questions is whether this new superconductor resembles a
high-temperature-cuprate superconductor or a low-temperature metallic
superconductor in terms of its current carrying characteristics in applied
magnetic fields. In spite of the very high transition temperatures of the
cuprate superconductors, their performance in magnetic fields has several
drawbacks[2]. Their large anisotropy restricts high bulk current densities to
much less than the full magnetic field-temperature (H-T) space over which
superconductivity is found. Further, weak coupling across grain boundaries
makes transport current densities in untextured polycrystalline forms low and
strongly magnetic field sensitive[3,4]. These studies of MgB2 address both
issues. In spite of the multi-phase, untextured, nano-scale sub-divided nature
of our samples, supercurrents flow throughout without the strong sensitivity to
weak magnetic fields characteristic of Josephson-coupled grains[3].
Magnetization measurements over nearly all of the superconducting H-T plane
show good temperature scaling of the flux pinning force, suggestive of a
current density determined by flux pinning. At least two length scales are
suggested by the magnetization and magneto optical (MO) analysis but the cause
of this seems to be phase inhomogeneity, porosity, and minority insulating
phase such as MgO rather than by weakly coupled grain boundaries. Our results
suggest that polycrystalline ceramics of this new class of superconductor will
not be compromised by the weak link problems of the high temperature
superconductors, a conclusion with enormous significance for applications if
higher temperature analogs of this compound can be discovered
A general scaling relation for the critical current density in Nb3Sn
We review the scaling relations for the critical current density (Jc) in
Nb3Sn wires and include recent findings on the variation of the upper critical
field (Hc2) with temperature (T) and A15 composition. We highlight deficiencies
in the Summers/Ekin relations, which are not able to account for the correct
Jc(T) dependence. Available Jc(H) results indicate that the magnetic field
dependence for all wires can be described with Kramer's flux shear model, if
non-linearities in Kramer plots are attributed to A15 inhomogeneities. The
strain (eps) dependence is introduced through a temperature and strain
dependent Hc2*(T,eps) and Ginzburg- Landau parameter kappa1(T,eps) and a strain
dependent critical temperature Tc(eps). This is more consistent than the usual
Ekin unification, which uses two separate and different dependencies on Hc2*(T)
and Hc2*(eps). Using a correct temperature dependence and accounting for the
A15 inhomogeneities leads to a remarkable simple relation for Jc(H,T,eps).
Finally, a new relation for s(eps) is proposed, based on the first, second and
third strain invariants.Comment: Accepted Topical Review for Superconductor, Science and Technolog
High magnetic field scales and critical currents in SmFeAs(O,F) crystals: promising for applications
Superconducting technology provides most sensitive field detectors, promising
implementations of qubits and high field magnets for medical imaging and for
most powerful particle accelerators. Thus, with the discovery of new
superconducting materials, such as the iron pnictides, exploring their
potential for applications is one of the foremost tasks. Even if the critical
temperature Tc is high, intrinsic electronic properties might render
applications rather difficult, particularly if extreme electronic anisotropy
prevents effective pinning of vortices and thus severely limits the critical
current density, a problem well known for cuprates. While many questions
concerning microscopic electronic properties of the iron pnictides have been
successfully addressed and estimates point to a very high upper critical field,
their application potential is less clarified. Thus we focus here on the
critical currents, their anisotropy and the onset of electrical dissipation in
high magnetic fields up to 65 T. Our detailed study of the transport properties
of optimally doped SmFeAs(O,F) single crystals reveals a promising combination
of high (>2 x 10^6 A/cm^2) and nearly isotropic critical current densities
along all crystal directions. This favorable intragrain current transport in
SmFeAs(O,F), which shows the highest Tc of 54 K at ambient pressure, is a
crucial requirement for possible applications. Essential in these experiments
are 4-probe measurements on Focused Ion Beam (FIB) cut single crystals with
sub-\mu\m^2 cross-section, with current along and perpendicular to the
crystallographic c-axis and very good signal-to-noise ratio (SNR) in pulsed
magnetic fields. The pinning forces have been characterized by scaling the
magnetically measured "peak effect"
A Review of the Properties of Nb3Sn and Their Variation with A15 Composition, Morphology and Strain State
This article gives an overview of the available literature on simplified,
well defined (quasi-)homogeneous laboratory samples. After more than 50 years
of research on superconductivity in Nb3Sn, a significant amount of results are
available, but these are scattered over a multitude of publications. Two
reviews exist on the basic properties of A15 materials in general, but no
specific review for Nb3Sn is available. This article is intended to provide
such an overview. It starts with a basic description of the Niobium-Tin
intermetallic. After this it maps the influence of Sn content on the the
electron-phonon interaction strength and on the field-temperature phase
boundary. The literature on the influence of Cu, Ti and Ta additions will then
be briefly summarized. This is followed by a review on the effects of grain
size and strain. The article is concluded with a summary of the main results.Comment: Invited Topical Review for Superconductor, Science and Technology.
Provisionally scheduled for July 200
- …