186 research outputs found

    First sequence-confirmed case of infection with the new influenza A(H1N1) strain in Germany

    Get PDF
    Here, we report on the first sequence-confirmed case of infection with the new influenza A(H1N1) virus in Germany. Two direct contacts of the patient were laboratory-confirmed as cases and demonstrate a chain of direct human-to-human transmission

    LSD1 controls metastasis of androgen-independent prostate cancer cells through PXN and LPAR6

    Get PDF
    Lysine-specific demethylase 1 (LSD1) was shown to control gene expression and cell proliferation of androgen-dependent prostate cancer (PCa) cells, whereas the role of LSD1 in androgen-independent metastatic prostate cancer remains elusive. Here, we show that depletion of LSD1 leads to increased migration and invasion of androgen-independent PCa cells. Transcriptome and cistrome analyses reveal that LSD1 regulates expression of lysophosphatidic acid receptor 6 (LPAR6) and cytoskeletal genes including the focal adhesion adaptor protein paxillin (PXN). Enhanced LPAR6 signalling upon LSD1 depletion promotes migration with concomitant phosphorylation of PXN. In mice LPAR6 overexpression enhances, whereas knockdown of LPAR6 abolishes metastasis of androgen-independent PCa cells. Taken together, we uncover a novel mechanism of how LSD1 controls metastasis and identify LPAR6 as a promising therapeutic target to treat metastatic prostate cancer

    Hepatitis E Virus Seroprevalence among Adults, Germany

    Get PDF
    We assessed hepatitis E virus (HEV) antibody seroprevalence in a sample of the adult population in Germany. Overall HEV IgG prevalence was 16.8% (95% CI 15.6%–17.9%) and increased with age, leveling off at >60 years of age. HEV is endemic in Germany, and the lifetime risk for exposure is high

    Возможность использования высокочастотного CuBr-лазера для создания скоростного лазерного монитора

    Get PDF
    Представлены оценки максимальных температур источников как внешней, так и собственной засветки, при которых будут иметь место искажения изображений, формируемых посредствам активных оптических систем. Показана возможность использования высокочастотного CuBr-лазера в качестве усилителя яркости лазерного монитора

    Efficient Foreign Gene Expression in Epstein-Barr Virus-Transformed Human B-Cells

    Get PDF
    Epstein-Barr virus (EBV) is a herpesvirus that transforms B-cells (B-LCL) and has undergone intense scrutiny owing to its association with Burkitt's lymphoma, nasopharyngeal carcinoma, and immunoblastic lymphomas. B-LCL have also proven useful in the study of human immunology. We describe a novel system for inducing efficient foreign gene expression in B-LCL using biotinylated adenovirus as an endosome-disrupting agent. Plasmid DNA is coupled to the exterior of viral particles by streptavidin-polylysine chimeric proteins. Up to 67% of B-LCL may be induced to express foreign genes in vitro in transient expression systems, and gene expression lasts for at least 17 days. We have expressed firefly luciferase, β-galactosidase (β-gal), chloramphenicol acetyltransferase, HIV gag, and env genes, as well as infectious HIV, and the EBV-specific BZLF gene in B-LCL with this system. In vivo delivery of a β-gal reporter gene to B-LCL was documented in a SCID mouse model. Potential applications include study of genetic regulation of EBV infection and transformation events, study of potential gene therapies for EBV-related B-cell tumors, and production of antigen-presenting cells for use in immunologic assays. Because of the high percentage of cells transformed and the length of foreign gene expression, the possibility of examining foreign gene expression in transient assays, without selection for clonal populations, exists

    Circadian clock proteins regulate neuronal redox homeostasis and neurodegeneration

    Get PDF
    Brain aging is associated with diminished circadian clock output and decreased expression of the core clock proteins, which regulate many aspects of cellular biochemistry and metabolism. The genes encoding clock proteins are expressed throughout the brain, though it is unknown whether these proteins modulate brain homeostasis. We observed that deletion of circadian clock transcriptional activators aryl hydrocarbon receptor nuclear translocator–like (Bmal1) alone, or circadian locomotor output cycles kaput (Clock) in combination with neuronal PAS domain protein 2 (Npas2), induced severe age-dependent astrogliosis in the cortex and hippocampus. Mice lacking the clock gene repressors period circadian clock 1 (Per1) and period circadian clock 2 (Per2) had no observed astrogliosis. Bmal1 deletion caused the degeneration of synaptic terminals and impaired cortical functional connectivity, as well as neuronal oxidative damage and impaired expression of several redox defense genes. Targeted deletion of Bmal1 in neurons and glia caused similar neuropathology, despite the retention of intact circadian behavioral and sleep-wake rhythms. Reduction of Bmal1 expression promoted neuronal death in primary cultures and in mice treated with a chemical inducer of oxidative injury and striatal neurodegeneration. Our findings indicate that BMAL1 in a complex with CLOCK or NPAS2 regulates cerebral redox homeostasis and connects impaired clock gene function to neurodegeneration

    Diurnal Rhythms in Neurexins Transcripts and Inhibitory/Excitatory Synapse Scaffold Proteins in the Biological Clock

    Get PDF
    The neurexin genes (NRXN1/2/3) encode two families (α and β) of highly polymorphic presynaptic proteins that are involved in excitatory/inhibitory synaptic balance. Recent studies indicate that neuronal activation and memory formation affect NRXN1/2/3α expression and alternative splicing at splice sites 3 and 4 (SS#3/SS#4). Neurons in the biological clock residing in the suprachiasmatic nuclei of the hypothalamus (SCN) act as self-sustained oscillators, generating rhythms in gene expression and electrical activity, to entrain circadian bodily rhythms to the 24 hours day/night cycles. Cell autonomous oscillations in NRXN1/2/3α expression and SS#3/SS#4 exons splicing and their links to rhythms in excitatory/inhibitory synaptic balance in the circadian clock were explored. NRXN1/2/3α expression and SS#3/SS#4 splicing, levels of neurexin-2α and the synaptic scaffolding proteins PSD-95 and gephyrin (representing excitatory and inhibitory synapses, respectively) were studied in mRNA and protein extracts obtained from SCN of C3H/J mice at different times of the 24 hours day/night cycle. Further studies explored the circadian oscillations in these components and causality relationships in immortalized rat SCN2.2 cells. Diurnal rhythms in mNRXN1α and mNRXN2α transcription, SS#3/SS#4 exon-inclusion and PSD-95 gephyrin and neurexin-2α levels were found in the SCN in vivo. No such rhythms were found with mNRXN3α. SCN2.2 cells also exhibited autonomous circadian rhythms in rNRXN1/2 expression SS#3/SS#4 exon inclusion and PSD-95, gephyrin and neurexin-2α levels. rNRXN3α and rNRXN1/2β were not expressed. Causal relationships were demonstrated, by use of specific siRNAs, between rNRXN2α SS#3 exon included transcripts and gephyrin levels in the SCN2.2 cells. These results show for the first time dynamic, cell autonomous, diurnal rhythms in expression and splicing of NRXN1/2 and subsequent effects on the expression of neurexin-2α and postsynaptic scaffolding proteins in SCN across the 24-h cycle. NRXNs gene transcripts may have a role in coupling the circadian clock to diurnal rhythms in excitatory/inhibitory synaptic balance
    corecore