3,268 research outputs found

    Quantum linear amplifier enhanced by photon subtraction and addition

    Get PDF
    A deterministic quantum amplifier inevitably adds noise to an amplified signal due to the uncertainty principle in quantum physics. We here investigate how a quantum-noise-limited amplifier can be improved by additionally employing the photon subtraction, the photon addition, and a coherent superposition of the two, thereby making a probabilistic, heralded, quantum amplifier. We show that these operations can enhance the performance in amplifying a coherent state in terms of intensity gain, fidelity, and phase uncertainty. In particular, the photon subtraction turns out to be optimal for the fidelity and the phase concentration among these elementary operations, while the photon addition also provides a significant reduction in the phase uncertainty with the largest gain effect.Comment: published version, 7 pages, 9 figure

    Electron Parallel Transport for Arbitrary Collisionality

    Get PDF
    Integral (nonlocal) closures [J.-Y. Ji and E. D. Held, Phys. Plasmas 21, 122116 (2014)] are combined with the momentum balance equation to derive electron parallel transport relations. For a single harmonic fluctuation, the relations take the same form as the classical Spitzer theory (with possible additional terms): the electric current and heat flux densities are connected to the modified electric field and temperature gradient by transport coefficients. In contrast to the classical theory, the dimensionless coefficients depend on the collisionality quantified by a Knudsen number, the ratio of the collision length to the angular wavelength. The key difference comes from the proper treatment of the viscosity and friction terms in the momentum balance equation, accurately reflecting the free streaming and collision terms in the kinetic equation. For an arbitrary fluctuation, the transport relations may be expressed by a Fourier series or transform. For low collisionality, the electric resistivity can be significantly larger than that of classical theory and may predict the correct timescale for fast magnetic reconnection

    Efficient entanglement criteria beyond Gaussian limits using Gaussian measurements

    Get PDF
    We present a formalism to derive entanglement criteria beyond the Gaussian regime that can be readily tested by only homodyne detection. The measured observable is the Einstein-Podolsky-Rosen (EPR) correlation. Its arbitrary functional form enables us to detect non-Gaussian entanglement even when an entanglement test based on second-order moments fails. We illustrate the power of our experimentally friendly criteria for a broad class of non-Gaussian states under realistic conditions. We also show rigorously that quantum teleportation for continuous variables employs a specific functional form of EPR correlation.Comment: published version, 6 pages, 3 figures, including Supplemental Materia

    Band Structure, Phonon Scattering and the Ultimate Performance of Single-Walled Carbon Nanotube Transistors

    Full text link
    Semiconducting single-walled carbon nanotubes are studied in the diffusive transport regime. The peak mobility is found to scale with the square of the nanotube diameter and inversely with temperature. The maximum conductance, corrected for the contacts, is linear in the diameter and inverse temperature. These results are in good agreement with theoretical predictions for acoustic phonon scattering in combination with the unusual band structure of nanotubes. These measurements set the upper bound for the performance of nanotube transistors operating in the diffusive regime

    The Changing Patterns in Grasslands and Soil Fertility along the Eastern Eurasian Steppe Transect across China–Mongolia–Russia

    Get PDF
    This paper analyses the adaptation and change in species along the north-south Eastern Eurasian Steppe Transect across China – Mongolia – Russia and considers the implications for climate change and management. The plant community diversity, above-ground biomass, N:P ratios of community and of dominant species, soil N (nitrogen), soil P (phosphorus) and AP (available phosphorus) contents were studied along a 1400 km north-south transect. The main findings were: (1) the community diversity and productivity decreased with the increase in latitude and a significant negative correlation was found between the many plant characteristics and latitude (P \u3c 0.05) – decreasing diversity, biomass and N:P ratios; (2) soil AP content was lowest in Inner Mongolia, whereas no significant change in soil total P with latitude was found in China-Mongolia-Russia transect, a significant positive correlation was detected between the soil nutrient (N and AP) and latitude (P \u3c 0.05); (3) a significant positive correlation was evident between plant community P content and soil AP content (P \u3c 0.01), but a negative correlation was found between community N:P ratio and soil AP content (P \u3c 0.05). The soil AP content can be used as a soil properties indicator to reflect the plant communities P content and N: P ratio. It is suggested that greater human activities in Inner Mongolia may be an important factor affecting soil AP content, community N:P and plant growth

    Acute safety, effectiveness, and real-world clinical usage of ultra-high density mapping for ablation of cardiac arrhythmias: results of the TRUE HD study

    Get PDF
    AIMS: The objective of this study was to verify acute safety, performance, and usage of a novel ultra-high density mapping system in patients undergoing ablation procedure in a real-world clinical setting. METHODS AND RESULTS: The TRUE HD study enrolled patients undergoing catheter ablation with mapping for all arrhythmias (excluding de novo atrial fibrillation) who were followed for 1 month. Safety was determined by collecting all serious adverse events and adverse events associated with the study devices. Performance was determined as the composite of: ability to map the arrhythmia/substrate, complete the ablation applications, arrhythmia termination (where applicable), and ablation validation. Use of mapping system in the ablation validation workflow was also evaluated. Among the 519 patients who underwent a complete (504) or attempted (15) procedure, 21 (4%) serious ablation-related complications were collected, with 3 (0.57%) potentially related to the mapping catheter. Four hundred and twenty treated patients resulted in a successful procedure confirmed by arrhythmia-specific validation techniques (83.3%; 95% confidence interval: 79.8-86.5%). A total of 1419 electroanatomical maps were created with a median acquisition time of 9:23 min per map. Of these, 372 maps in 222 (44%) patients were collected for ablation validation purposes. Following validation mapping, 162/222 (73%) patients required additional ablation. CONCLUSION: In the TRUE HD study mapping was associated with rates of acute success and complications consistent with previously published reports. Importantly, a low percentage of events (0.57%) was attributed to the mapping catheter. When performed, validation mapping was useful for identifying additional targets for ablation in the majority of patients

    Small anisotropy of the lower critical field and s±s_\pm-wave two-gap feature in single crystal LiFeAs

    Full text link
    The in- and out-of-plane lower critical fields and magnetic penetration depths for LiFeAs were examined. The anisotropy ratio γHc1(0)\gamma_{H_{c1}}(0) is smaller than the expected theoretical value, and increased slightly with increasing temperature from 0.6TcT_c to TcT_c. This small degree of anisotropy was numerically confirmed by considering electron correlation effect. The temperature dependence of the penetration depths followed a power law(\simTnT^n) below 0.3TcT_c, with nn>>3.5 for both λab\lambda_{ab} and λc\lambda_c. Based on theoretical studies of iron-based superconductors, these results suggest that the superconductivity of LiFeAs can be represented by an extended s±s_\pm-wave due to weak impurity scattering effect. And the magnitudes of the two gaps were also evaluted by fitting the superfluid density for both the in- and out-of-plane to the two-gap model. The estimated values for the two gaps are consistent with the results of angle resolved photoemission spectroscopy and specific heat experiments.Comment: 10 pages, 5 figure

    Local electronic density of states of a semiconducting carbon nanotube interface

    Get PDF
    The local electronic structure of semiconducting single-wall carbon nanotubes was studied with scanning tunneling microscopy. We performed scanning tunneling spectroscopy measurement at selected locations on the center axis of carbon nanotubes, acquiring a map of the electronic density of states. Spatial oscillation was observed in the electronic density of states with the period of atomic lattice. Defect induced interface states were found at the junctions of the two semiconducting nanotubes, which are well-understood in analogy with the interface states of bulk semiconductor heterostructures. The electronic leak of the van Hove singularity peaks was observed across the junction, due to inefficient charge screening in a one-dimensional structure.open111
    corecore