5 research outputs found

    Joint action modulates motor system involvement during action observation in 3-year-olds

    Get PDF
    When we are engaged in a joint action, we need to integrate our partner’s actions with our own actions. Previous research has shown that in adults the involvement of one’s own motor system is enhanced during observation of an action partner as compared to during observation of an individual actor. The aim of this study was to investigate whether similar motor system involvement is present at early stages of joint action development and whether it is related to joint action performance. In an EEG experiment with 3-year-old children, we assessed the children’s brain activity and performance during a joint game with an adult experimenter. We used a simple button-pressing game in which the two players acted in turns. Power in the mu- and beta-frequency bands was compared when children were not actively moving but observing the experimenter’s actions when (1) they were engaged in the joint action game and (2) when they were not engaged. Enhanced motor involvement during action observation as indicated by attenuated sensorimotor mu- and beta-power was found when the 3-year-olds were engaged in the joint action. This enhanced motor activation during action observation was associated with better joint action performance. The findings suggest that already in early childhood the motor system is differentially activated during action observation depending on the involvement in a joint action. This motor system involvement might play an important role for children’s joint action performance

    Do animals and furniture items elicit different brain responses in human infants?

    No full text
    One of the earliest categorical distinctions to be made by preverbal infants is the animate–inanimate distinction. To explore the neural basis for this distinction in 7–8-month-olds, an equal number of animal and furniture pictures was presented in an ERP-paradigm. The total of 118 pictures, all looking different from each other, were presented in a semi-randomized order for 1000 ms each. Infants’ brain responses to exemplars from both categories differed systematically regarding the negative central component (Nc: 400–600 ms) at anterior channels. More specifically, the Nc was enhanced for animals in one subgroup of infants, and for furniture items in another subgroup of infants. Explorative analyses related to categorical priming further revealed category-specific differences in brain responses in the late time window (650–1550 ms) at right frontal channels: Unprimed stimuli (preceded by a different-category item) elicited a more positive response as compared to primed stimuli (preceded by a same-category item). In sum, these findings suggest that the infant’s brain discriminates exemplars from both global domains. Given the design of our task, we conclude that processes of category identification are more likely to account for our findings than processes of on-line category formation during the experimental session
    corecore