33 research outputs found

    Gamma oscillation underlies hyperthermia-induced epileptiform-like spikes in immature rat hippocampal slices

    Get PDF
    BACKGROUND: Recently a hyperthermic rat hippocampal slice model system has been used to investigate febrile seizure pathophysiology. Our previous data indicates that heating immature rat hippocampal slices from 34 to 41°C in an interface chamber induced epileptiform-like population spikes accompanied by a spreading depression (SD). This may serve as an in vitro model of febrile seizures. RESULTS: In this study, we further investigate cellular mechanisms of hyperthermia-induced initial population spike activity. We hypothesized that GABA(A) receptor-mediated 30–100 Hz γ oscillations underlie some aspects of the hyperthermic population spike activity. In 24 rat hippocampal slices, the hyperthermic population spike activity occurred at an average frequency of 45.9 ± 14.9 Hz (Mean ± SE, range = 21–79 Hz, n = 24), which does not differ significantly from the frequency of post-tetanic γ oscillations (47.1 ± 14.9 Hz, n = 34) in the same system. High intensity tetanic stimulation induces hippocampal neuronal discharges followed by a slow SD that has the magnitude and time course of the SD, which resembles hyperthermic responses. Both post-tetanic γ oscillations and hyperthermic population spike activity can be blocked completely by a specific GABA(A) receptor blocker, bicuculline (5–20 μM). Bath-apply kynurenic acid (7 mM) blocks synaptic transmission, but fails to prevent hyperthermic population spikes, while intracellular diffusion of QX-314 (30 mM) abolishes spikes and produces a smooth depolarization in intracellular recording. CONCLUSION: These results suggest that the GABA(A) receptor-governed γ oscillations underlie the hyperthermic population spike activity in immature hippocampal slices

    Cooling abolishes neuronal network synchronization in rat hippocampal slices.

    Get PDF
    PURPOSE: We sought to determine whether cooling brain tissue from 34 to 21 degrees C could abolish tetany-induced neuronal network synchronization (gamma oscillations) without blocking normal synaptic transmission. METHODS: Intracellular and extracellular electrodes recorded activity in transverse hippocampal slices (450-500 microm) from Sprague-Dawley male rats, maintained in an air-fluid interface chamber. Gamma oscillations were evoked by afferent stimulation at 100 Hz for 200 ms. Baseline temperature in the recording chamber was 34 degrees C, reduced to 21 degrees C within 20 min. RESULTS: Suprathreshold tetanic stimuli evoked membrane potential oscillations in the 40-Hz frequency range (n = 21). Gamma oscillations induced by tetanic stimulation were blocked by bicuculline, a gamma-aminobutyric acid (GABA)A-receptor antagonist. Cooling from 34 to 21 degrees C reversibly abolished gamma oscillations in all slices tested. Short, low-frequency discharges persisted after cooling in six of 14 slices. Single-pulse-evoked potentials, however, were preserved after cooling in all cases. Latency between stimulus and onset of gamma oscillation was increased with cooling. Frequency of oscillation was correlated with chamber cooling temperature (r = 0.77). Tetanic stimulation at high intensity elicited not only gamma oscillation, but also epileptiform bursts. Cooling dramatically attenuated gamma oscillation and abolished epileptiform bursts in a reversible manner. CONCLUSIONS: Tetany-induced neuronal network synchronization by GABAA-sensitive gamma oscillations is abolished reversibly by cooling to temperatures that do not block excitatory synaptic transmission. Cooling also suppresses transition from gamma oscillation to ictal bursting at higher stimulus intensities. These findings suggest that cooling may disrupt network synchrony necessary for epileptiform activity

    A randomized controlled clinical trial evaluating quality of life when using a simple acupressure protocol in women with primary dysmenorrhea

    Get PDF
    Objective: To evaluate a simple acupressure protocol in LIV3 and LI4 acupoints in women with primary dysmenorrhea. Methods: This paper reports a randomized, single blinded clinical trial. 90 young women with dysmenorrhea were recruited to three groups to receive 20 minutes acupressure every day in either LIV3 or LI4, or placebo points. Acupressure was timed five days before menstruation for three successive menstrual cycles. On menstruation, each participant completed the Wong Baker faces pain scale, and the quality of life short form -12 (QOL SF-12). Results: Intensity and duration of pain between the three groups in the second and third cycles during the intervention (p<0.05) differed significantly. Significant differences were seen in all domains of QOL except for mental health (p=0.4), general health (p=0.7) and mental subscale component (p=0.12) in the second cycle, and mental health (p=0.9), and mental subscale component (p=0.14) in the third cycle. Conclusion: Performing the simple acupressure protocol is an effective method to decrease the intensity and duration of dysmenorrhea, and improve the QOL. Key words: Dysmenorrhea, acupressure, quality of life Registration ID in IRCT: IRCT2016052428038N

    Assessment of the association between body composition and risk of non-alcoholic fatty liver

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) is defined as the condition of fat accumulation in the liver. This cross-sectional study aimed to investigate the relationship between body composition and fatty liver and determine of cut-off point for predicting NAFLD. Samples were selected from the nutrition clinic from 2016 to 2017 in Tehran, Iran. The liver steatosis was calculated using the CAP score through the FiroScan� and body composition was measured using the dual-energy X-ray absorptiometry scan method. A total of 2160 patients participated in this study, 745 (34.5) subjects had NAFLD. We found that fat-free tissue was inversely and fat tissue was directly correlated with the risk of NAFLD in almost all factors and the risk of developing NAFLD increases if the total fat exceeds 32.23 and 26.73 in women and men and abdominal fat exceeds 21.42 and 13.76 in women and men, respectively. Finally, we realized that the total fat percent had the highest AUC (0.932 for men and 0.917 for women) to predict the risk of NAFLD. Overall, the likelihood of NAFLD development rose significantly with increasing the amount of total fat and abdominal fat from the cut-off point level. Copyright: © 2021 Ariya et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Bacterial genes involved in incorporation of nickel into a hydrogenase enzyme.

    No full text

    Gamma oscillation underlies hyperthermia-induced epileptiform-like spikes in immature rat hippocampal slices

    No full text
    Abstract Background Recently a hyperthermic rat hippocampal slice model system has been used to investigate febrile seizure pathophysiology. Our previous data indicates that heating immature rat hippocampal slices from 34 to 41°C in an interface chamber induced epileptiform-like population spikes accompanied by a spreading depression (SD). This may serve as an in vitro model of febrile seizures. Results In this study, we further investigate cellular mechanisms of hyperthermia-induced initial population spike activity. We hypothesized that GABAA receptor-mediated 30–100 Hz γ oscillations underlie some aspects of the hyperthermic population spike activity. In 24 rat hippocampal slices, the hyperthermic population spike activity occurred at an average frequency of 45.9 ± 14.9 Hz (Mean ± SE, range = 21–79 Hz, n = 24), which does not differ significantly from the frequency of post-tetanic γ oscillations (47.1 ± 14.9 Hz, n = 34) in the same system. High intensity tetanic stimulation induces hippocampal neuronal discharges followed by a slow SD that has the magnitude and time course of the SD, which resembles hyperthermic responses. Both post-tetanic γ oscillations and hyperthermic population spike activity can be blocked completely by a specific GABAA receptor blocker, bicuculline (5–20 μM). Bath-apply kynurenic acid (7 mM) blocks synaptic transmission, but fails to prevent hyperthermic population spikes, while intracellular diffusion of QX-314 (30 mM) abolishes spikes and produces a smooth depolarization in intracellular recording. Conclusion These results suggest that the GABAA receptor-governed γ oscillations underlie the hyperthermic population spike activity in immature hippocampal slices.</p
    corecore