1,401 research outputs found

    Multiple wavelength InGaAs quantum dot lasers using selective area epitaxy

    Get PDF
    The authors demonstrate multiple wavelength lasers fabricated from InGaAsquantum dots. Selective area epitaxy is used to grow the active region, consisting of five layer stack of InGaAsquantum dots with different band gapenergies in selected regions of the substrate, for fabrication of the lasers. The mechanism responsible for engineering of the band gap of quantum dots is discussed. The performance of the selectively grown lasers is compared to the lasers fabricated from structures grown in a standard, nonselective area growth process.The Australian Research Council is gratefully acknowledged for financial support

    Using Mathematics Courses in Support of Humanities in a Liberal Arts Curriculum

    Get PDF

    Electrical isolation of GaN by MeV ion irradiation

    Get PDF
    The evolution of sheet resistance of n-type GaN epilayers exposed to irradiation with MeV H, Li, C, and O ions is studied in situ. Results show that the threshold dose necessary for complete isolation linearly depends on the original free electron concentration and reciprocally depends on the number of atomic displacements produced by ion irradiation. Furthermore, such isolation is stable to rapid thermal annealing at temperatures up to 900 °C. In addition to providing a better understanding of the physical mechanisms responsible for electrical isolation, these results can be used for choosing implant conditions necessary for an effective electrical isolation of GaN-based devices.This work was partly supported by Conselho Nacional de Pesquisas (CNPq, Brazil) under Contract No. 200541/ 99-4

    Spatially resolved characterization of InGaAs/GaAs quantum dot structures by scanning spreading resistance microscopy

    Get PDF
    Cross-sectional scanning spreading resistance microscopy (SSRM) is used to investigate stacked InGaAs/GaAs quantum dot(QD)structures with different doping schemes. Spatially resolved imaging of the QDs by SSRM is demonstrated. The SSRM contrast obtained for the QD layers is found to depend on doping in the structure. In the undoped structures both QD-layers and QDs within the layers could be resolved, while in the dopedstructures the QD layers appear more or less uniformly broadened. The origin of the SSRM contrast in the QD layer in the different samples is discussed and correlated with doping schemes.T. Hakkarainen, O. Douhéret, and S. Anand would like to acknowledge the Swedish Research Council VR for fi- nancial support and the Kurt-Alice Wallenberg KAW foundation for financing the microscope. L. Fu, H. H. Tan, and C. Jagadish would like to acknowledge the Australian Research Council ARC for financial support and Australian National Fabrication Facility ANFF for access to the facilities

    High temperature rapid thermal annealing of phosphorous ion implanted InAs∕InP quantum dots

    No full text
    The effect of high temperature annealing of the InAs∕InPquantum dots(QDs) containing a thin GaAs interlayer is investigated. The QDs are rapid thermally annealed at 750, 800, 850, and 900°C for 30s. The QDs with the GaAs interlayer show good thermal stability up to 850°C as well as enhanced integrated photoluminescence (PL) intensity and reduced PL linewidth. The effect of high energy(450keV) phosphorous ion implantation at room temperature with doses of 5×10¹¹–5×10¹³ions/cm² with subsequent high temperature (750–850°C)rapid thermal annealing is also studied. A large implantation-inducedenergy shift of up to 309meV (400nm) is observed. The implanted samples annealed at 850°C show reduced PL linewidth and enhanced integrated PL intensity compared to the implanted samples annealed at 750°C.The authors gratefully acknowledge financial support from the Australian Research Council

    XIST: An XML Index Selection Tool

    Full text link

    Proton implantation-induced intermixing of InAs∕InP quantum dots

    No full text
    Protonimplantation-induced intermixing of InAsquantum dots(QDs) capped with InP, GaInAsP, and InP and InGaAs layers grown by metal-organic chemical vapor deposition is investigated. The samples are annealed at 750, 800, 850, and 900°C for 30s and thermal stability of the QDs is studied. The optimum annealing temperature is around 800°C which gives maximum implantation-induced energy shift. The QDs capped with InP layers show the highest implantation-induced energy shift due to strong group V interdiffusion whereas the QDsgrown on and capped with GaInAsP layers show the least implantation-induced energy shift due to weak group V and group III interdiffusion. The QDs capped with InP and InGaAs layers show intermediate implantation-induced energy shift and are less thermally stable compared to the QDsgrown on and capped with GaInAsP layers. The QDs capped with InP layers show enhanced photoluminescence(PL) intensity when implanted with lower proton dose (less than 5×10¹⁴ions/cm²). On the other hand higher proton dose (more than 1×10¹⁴ions/cm²) reduces the PL linewidth in all samples.The authors gratefully acknowledge financial support from the Australian Research Council
    corecore