14,930 research outputs found

    The entanglement in one-dimensional random XY spin chain with Dzyaloshinskii-Moriya interaction

    Full text link
    The impurities of exchange couplings, external magnetic fields and Dzyaloshinskii--Moriya (DM) interaction considered as Gaussian distribution, the entanglement in one-dimensional random XYXY spin systems is investigated by the method of solving the different spin-spin correlation functions and the average magnetization per spin. The entanglement dynamics at central locations of ferromagnetic and antiferromagnetic chains have been studied by varying the three impurities and the strength of DM interaction. (i) For ferromagnetic spin chain, the weak DM interaction can improve the amount of entanglement to a large value, and the impurities have the opposite effect on the entanglement below and above critical DM interaction. (ii) For antiferromagnetic spin chain, DM interaction can enhance the entanglement to a steady value. Our results imply that DM interaction strength, the impurity and exchange couplings (or magnetic field) play competing roles in enhancing quantum entanglement.Comment: 12 pages, 3 figure

    The new two-way street of Chinese direct investment in the European Union

    Get PDF
    In the light of growing trade and investment flows, the investment relationship between the European Union (EU) and China needs to be revisited. Chinese firms face significant barriers in entering and operating in the European market whilst the European economy needs more investment. Support for investment may be crucial for both the EU and China to improve economic growth. The prospective International Investment Agreement (IIA) seeks to achieve this goal. This paper focuses on Chinese inward foreign direct investment into the EU and on the potential for generating greater mutual EU–China flows, improved market access and investor protection under the IIA

    Magnetic fluctuations in n-type high-TcT_c superconductors reveal breakdown of fermiology

    Full text link
    By combining experimental measurements of the quasiparticle and dynamical magnetic properties of optimally electron-doped Pr0.88_{0.88}LaCe0.12_{0.12}CuO4_4 with theoretical calculations we demonstrate that the conventional fermiology approach cannot possibly account for the magnetic fluctuations in these materials. In particular, we perform tunneling experiments on the very same sample for which a dynamical magnetic resonance has been reported recently and use photoemission data by others on a similar sample to characterize the fermionic quasiparticle excitations in great detail. We subsequently use this information to calculate the magnetic response within the conventional fermiology framework as applied in a large body of work for the hole-doped superconductors to find a profound disagreement between the theoretical expectations and the measurements: this approach predicts a step-like feature rather than a sharp resonance peak, it underestimates the intensity of the resonance by an order of magnitude, it suggests an unreasonable temperature dependence of the resonance, and most severely, it predicts that most of the spectral weight resides in incommensurate wings which are a key feature of the hole-doped cuprates but have never been observed in the electron-doped counterparts. Our findings strongly suggest that the magnetic fluctuations reflect the quantum-mechanical competition between antiferromagnetic and superconducting orders.Comment: 10 pages, 9 figures, 1 tabl

    Multi-component lattice-Boltzmann model with interparticle interaction

    Full text link
    A previously proposed [X. Shan and H. Chen, Phys. Rev. E {\bf 47}, 1815, (1993)] lattice Boltzmann model for simulating fluids with multiple components and interparticle forces is described in detail. Macroscopic equations governing the motion of each component are derived by using Chapman-Enskog method. The mutual diffusivity in a binary mixture is calculated analytically and confirmed by numerical simulation. The diffusivity is generally a function of the concentrations of the two components but independent of the fluid velocity so that the diffusion is Galilean invariant. The analytically calculated shear kinematic viscosity of this model is also confirmed numerically.Comment: 18 pages, compressed and uuencoded postscript fil

    Effect of next-nearest neighbor coupling on the optical spectra in bilayer graphene

    Full text link
    We investigate the dependence of the optical conductivity of bilayer graphene (BLG) on the intra- and inter-layer interactions using the most complete model to date. We show that the next nearest-neighbor intralayer coupling introduces new features in the low-energy spectrum that are highly sensitive to sample doping, changing significantly the ``universal'' conductance. Further, its interplay with interlayer couplings leads to an anisotropy in conductance in the ultraviolet range. We propose that experimental measurement of the optical conductivity of intrinsic and doped BLG will provide a good benchmark for the relative importance of intra- and inter-layer couplings at different doping levels.Comment: 5 pages, 5 figure

    Exact dynamics of interacting qubits in a thermal environment: Results beyond the weak coupling limit

    Full text link
    We demonstrate an exact mapping of a class of models of two interacting qubits in thermal reservoirs to two separate spin-bath problems. Based on this mapping, exact numerical simulations of the qubits dynamics can be performed, beyond the weak system-bath coupling limit. Given the time evolution of the system, we study, in a numerically exact way, the dynamics of entanglement between pair of qubits immersed in boson thermal baths, showing a rich phenomenology, including an intermediate oscillatory behavior, the entanglement sudden birth, sudden death, and revival. We find that stationary entanglement develops between the qubits due to their coupling to a thermal environment, unlike the isolated qubits case in which the entanglement oscillates. We also show that the occurrence of entanglement sudden death in this model depends on the portion of the zero and double excitation states in the subsystem initial state. In the long-time limit, analytic expressions are presented at weak system-bath coupling, for a range of relevant qubit parameters

    Alternative new notation for quantum information theory

    Full text link
    A new notation has been introduced for the quantum information theory. By this notation,some calculations became simple in quantum information theory such as quantum swapping, quantum teleportation.Comment: submitte

    Holographic Superconductor for a Lifshitz fixed point

    Full text link
    We consider the gravity dual of strongly coupled system at a Lifshitz-fixed point and finite temperature, which was constructed in a recent work arXiv:0909.0263. We construct an Abelian Higgs model in that background and calculate condensation and conductivity using holographic techniques. We find that condensation happens and DC conductivity blows up when temperature turns below a critical value.Comment: 14 pages, 4 figures, v4: improved version, references adde

    Suppression of decoherence by bath ordering

    Full text link
    The dynamics of two coupled spins-1/2 coupled to a spin-bath is studied as an extended model of the Tessieri-Wilkie Hamiltonian \cite{TWmodel}. The pair of spins served as an open subsystem were prepared in one of the Bell states and the bath consisted of some spins-1/2 is in a thermal equilibrium state from the very beginning. It is found that with the increasing the coupling strength of the bath spins, the bath forms a resonant antiferromagnetic order. The polarization correlation between the two spins of the subsystem and the concurrence are recovered in some extent to the isolated subsystem. This suppression of the subsystem decoherence may be used to control the quantum devices in practical applications.Comment: 32 pages, Chinese Physics (accepted
    • 

    corecore