617 research outputs found

    Stay and Exemption Laws

    Get PDF

    Stay and Exemption Laws

    Get PDF

    Polypharmacy Among Prescription Drug Users

    Get PDF
    Polypharmacy, i.e., the misuse of multiple prescription drugs or prescription medication with other substances, is highly problematic. Whether unintentional or deliberate, misuse of multiple drugs can lead to adverse effects including addiction; drug-drug interactions; and overdose, potentially resulting in death. Polypharmacy is not uncommon; almost 84 percent of prescription drug misusers receiving substance abuse treatment in Indiana reported using at least one additional substance, most commonly alcohol or marijuana

    GWFASTA: server for FASTA search in eukaryotic and microbial genomes

    Get PDF
    Similarity searches are a powerful method for solving important biological problems such as database scanning, evolutionary studies, gene prediction, and protein structure prediction. FASTA is a widely used sequence comparison tool for rapid database scanning. Here we describe the GWFASTA server that was developed to assist the FASTA user in similarity searches against partially and/or completely sequenced genomes. GWFASTA consists of more than 60 microbial genomes, eight eukaryote genomes, and proteomes of annotatedgenomes. Infact, it provides the maximum number of databases for similarity searching from a single platform. GWFASTA allows the submission of more than one sequence as a single query for a FASTA search. It also provides integrated post-processing of FASTA output, including compositional analysis of proteins, multiple sequences alignment, and phylogenetic analysis. Furthermore, it summarizes the search results organism-wise for prokaryotes and chromosome-wise for eukaryotes. Thus, the integration of different tools for sequence analyses makes GWFASTA a powerful toolfor biologists

    Seeing Through the Data: A Statistical Evaluation of Prohibited Item Detection Benchmark Datasets for X-ray Security Screening

    Get PDF
    The rapid progress in automatic prohibited object detection within the context of X-ray security screening, driven forward by advances in deep learning, has resulted in the first internationally-recognized, application-focused object detection performance standard (ECAC Common Testing Methodology for Automated Prohibited Item Detection Systems). However, the ever-increasing volume of detection work in this application area is highly reliant on a limited set of large-scale benchmark detection datasets that are specific to this domain. This study provides a comprehensive quantitative analysis of the underlying distribution of the prohibited item instances in three of the most prevalent X-ray security imagery benchmark and how these correlate against the detection performance of six state-of-the-art object detectors spanning multiple contemporary object detection paradigms. We focus on object size, location and aspect ratio within the image in addition to looking at global properties such as image colour distribution. Our results show a clear correlation between false negative (missed) detections and object size with the distribution of undetected items being statistically smaller in size than those typically found in the corresponding dataset as a whole. For false positive detections, the size distribution of such false alarm instances is shown to differ from the corresponding dataset test distribution in all cases. Furthermore, we observe that onestage, anchor-free object detectors may be more vulnerable to the detection of heavily occluded or cluttered objects than other approaches whilst the detection of smaller prohibited item instances such as bullets remains more challenging than other object types
    • …
    corecore