7,612 research outputs found

    Strong stability in the Hospitals/Residents problem

    Get PDF
    We study a version of the well-known Hospitals/Residents problem in which participants' preferences may involve ties or other forms of indifference. In this context, we investigate the concept of strong stability, arguing that this may be the most appropriate and desirable form of stability in many practical situations. When the indifference is in the form of ties, we describe an O(a^2) algorithm to find a strongly stable matching, if one exists, where a is the number of mutually acceptable resident-hospital pairs. We also show a lower bound in this case in terms of the complexity of determining whether a bipartite graph contains a perfect matching. By way of contrast, we prove that it becomes NP-complete to determine whether a strongly stable matching exists if the preferences are allowed to be arbitrary partial orders

    The hospitals/residents problem with ties

    Get PDF
    The hospitals/residents problem is an extensively-studied many-one stable matching problem. Here, we consider the hospitals/residents problem where ties are allowed in the preference lists. In this extended setting, a number of natural definitions for a stable matching arise. We present the first linear-time algorithm for the problem under the strongest of these criteria, so-called super-stability . Our new results have applications to large-scale matching schemes, such as the National Resident Matching Program in the US, and similar schemes elsewhere

    A critical comparison of approaches to resource name management within the IEC common information model

    Get PDF
    Copyright @ 2012 IEEEElectricity network resources are frequently identified within different power systems by inhomogeneous names and identities due to the legacy of their administration by different utility business domains. The IEC 61970 Common Information Model (CIM) enables network modeling to reflect the reality of multiple names for unique network resources. However this issue presents a serious challenge to the integrity of a shared CIM repository that has the task of maintaining a resource manifest, linking network resources to master identities, when unique network resources may have multiple names and identities derived from different power system models and other power system applications. The current approach, using CIM 15, is to manage multiple resource names within a singular CIM namespace utilizing the CIM ā€œIdentifiedObjectā€ and ā€œNameā€ classes. We compare this approach to one using additional namespaces relating to different power systems, similar to the practice used in CIM extensions, in order to more clearly identify the genealogy of a network resource, provide faster model import times and a simpler means of supporting the relationship between multiple resource names and identities and a master resource identity.This study is supported by the UK National Grid and Brunel University

    A New Dimension in Wood Utilization

    Get PDF

    Prime ideals of Ore extensions over commutative rings

    Get PDF
    • ā€¦
    corecore