1,286 research outputs found

    Formation of an Icosahedral Structure during the Freezing of Gold Nanoclusters: Surface-Induced Mechanism

    Full text link
    The freezing behavior of gold nanoclusters was studied by employing molecular dynamics simulations based on a semi-empirical embedded-atom method. Investigations of the gold nanoclusters revealed that, just after freezing, ordered nano-surfaces with a fivefold symmetry were formed with interior atoms remaining in the disordered state. Further lowering of temperatures induced nano-crystallization of the interior atoms that proceeded from the surface towards the core region, finally leading to an icosahedral structure. These dynamic processes explain why the icosahedral cluster structure is dominantly formed in spite of its energetic metastability.Comment: 9 pages, 4 figures(including 14 eps-files

    Solid-liquid phase coexistence and structural transitions in palladium clusters

    Full text link
    We use molecular dynamics with an embedded atom potential to study the behavior of palladium nanoclusters near the melting point in the microcanonical ensemble. We see transitions from both fcc and decahedral ground state structures to icosahedral structures prior to melting over a range of cluster sizes. In all cases this transition occurs during solid-liquid phase coexistence and the mechanism for the transition appears to be fluctuations in the molten fraction of the cluster and subsequent recrystallization into the icosahedral structure.Comment: 8 pages, 6 figure

    Critical Level Statistics of the Fibonacci Model

    Full text link
    We numerically analyze spectral properties of the Fibonacci model which is a one-dimensional quasiperiodic system. We find that the energy levels of this model have the distribution of the band widths ww obeys PB(w)∼wαP_B(w)\sim w^{\alpha} (w→0)(w\to 0) and PB(w)∼e−βwP_B(w) \sim e^{-\beta w} (w→∞)(w\to\infty), the gap distribution PG(s)∼s−δP_G(s)\sim s^{-\delta} (s→0)(s\to 0) (α,β,δ>0\alpha,\beta,\delta >0) . We also compare the results with those of multi-scale Cantor sets. We find qualitative differences between the spectra of the Fibonacci model and the multi-scale Cantor sets.Comment: 7 page

    Theoretical study of the thermal behavior of free and alumina-supported Fe-C nanoparticles

    Full text link
    The thermal behavior of free and alumina-supported iron-carbon nanoparticles is investigated via molecular dynamics simulations, in which the effect of the substrate is treated with a simple Morse potential fitted to ab initio data. We observe that the presence of the substrate raises the melting temperature of medium and large Fe1−xCxFe_{1-x}C_x nanoparticles (xx = 0-0.16, NN = 80-1000, non- magic numbers) by 40-60 K; it also plays an important role in defining the ground state of smaller Fe nanoparticles (NN = 50-80). The main focus of our study is the investigation of Fe-C phase diagrams as a function of the nanoparticle size. We find that as the cluster size decreases in the 1.1-1.6-nm-diameter range the eutectic point shifts significantly not only toward lower temperatures, as expected from the Gibbs-Thomson law, but also toward lower concentrations of C. The strong dependence of the maximum C solubility on the Fe-C cluster size may have important implications for the catalytic growth of carbon nanotubes by chemical vapor deposition.Comment: 13 pages, 11 figures, higher quality figures can be seen in article 9 at http://alpha.mems.duke.edu/wahyu

    Slave-Boson Three-Band Model with O-O Hopping for High-Tc Superconductors

    Full text link
    Slave boson mean-field approximation is carried out analytically for weakly doped CuO_2 conduction planes, characterized by Cu-O charge transfer energy \Delta_{pd}, Cu-O hopping t_0, O-O hopping t' and repulsion U_d between holes on Cu site taken as infinite. At zero doping \delta, finite negative t',|t'|<t_0/2, expands the range of stability of the covalent, conducting state on the expense of the insulating state which, however, remains stable at larger \Delta_{pd}. For sufficiently large \Delta_{pd} the renormalized charge transfer energy saturates at 4|t'| instead of decreasing to zero, as at t'=0 case. In contrast to t', finite \delta suppresses the insulating state nearly symmetrically with respect to the sign of \delta. The regime with charge transfer energy renormalized close to 4|t'| fits remarkably well the ARPES spectra of Bi2212 and LSCO, and, in the latter case, explains the observed strong doping dependence of the Cu-O hopping.Comment: 4 pages, 2 figure

    Effect of Stripes on Electronic States in Underdoped La_{2-x}Sr_xCuO_4

    Full text link
    We investigate the electronic states of underdoped La_{2-x}Sr_xCuO_4 (LSCO) by using a microscopic model, i.e., t-t'-t''-J model, containing vertical charge stripes. The numerically exact diagonalization calculation on small clusters shows the consistent explanation of the physical properties in the angle-resolved photoemission, neutron magnetic scattering and optical conductivity experiments such as the antiphase domain and quasi-one-dimensional charge transport. The pair correlation function of the d-channel is suppressed by the stripes. These results demonstrate a crucial role of the stripes in LSCOComment: 4 pages, 4 EPS figures, revised version, to appear in Phys. Rev. Lett. Vol.82, No.25, 199

    Electron-Like Fermi Surface and Remnant (pi,0) Feature in Overdoped La1.78Sr0.22CuO4

    Full text link
    We have performed an angle-resolved photoemission study of overdoped La1.78Sr0.22CuO4, and have observed sharp nodal quasiparticle peaks in the second Brillouin zone that are comparable to data from Bi2Sr2CaCu2O8+d. The data analysis using energy distribution curves, momentum distribution curves and intensity maps all show evidence of an electron-like Fermi surface, which is well explained by band structure calculations. Evidence for many-body effects are also found in the substantial spectral weight remaining below the Fermi level around (pi,0), where the band is predicted to lie above EF.Comment: 4 pages, 4 figure

    Theory of Electron Differentiation, Flat Dispersion and Pseudogap Phenomena

    Full text link
    Aspects of electron critical differentiation are clarified in the proximity of the Mott insulator. The flattening of the quasiparticle dispersion appears around momenta (Ï€,0)(\pi,0) and (0,Ï€)(0,\pi) on square lattices and determines the criticality of the metal-insulator transition with the suppressed coherence in that momentum region of quasiparticles. Such coherence suppression at the same time causes an instability to the superconducting state if a proper incoherent process is retained. The d-wave pairing interaction is generated from such retained processes without disturbance from the coherent single-particle excitations. Pseudogap phenomena widely observed in the underdoped cuprates are then naturally understood from the mode-mode coupling of d-wave superconducting(dSC) fluctuations with antiferromagnetic ones. When we assume the existence of a strong d-wave pairing force repulsively competing with antiferromagnetic(AFM) fluctuations under the formation of flat and damped single-particle dispersion, we reproduce basic properties of the pseudogap seen in the magnetic resonance, neutron scattering, angle resolved photoemission and tunneling measurements in the cuprates.Comment: 9 pages including 2 figures, to appear in J. Phys. Chem. Solid
    • …
    corecore