1,135 research outputs found

    Application of the Limit Cycle Model to Star Formation Histories in Spiral Galaxies: Variation among Morphological Types

    Get PDF
    We propose a limit-cycle scenario of star formation history for any morphological type of spiral galaxies. It is known observationally that the early-type spiral sample has a wider range of the present star formation rate (SFR) than the late-type sample. This tendency is understood in the framework of the limit-cycle model of the interstellar medium (ISM), in which the SFR cyclically changes in accordance with the temporal variation of the mass fraction of the three ISM components. When the limit-cycle model of the ISM is applied, the amplitude of variation of the SFR is expected to change with the supernova (SN) rate. Observational evidence indicates that the early-type spiral galaxies show smaller rates of present SN than late-type ones. Combining this evidence with the limit-cycle model of the ISM, we predict that the early-type spiral galaxies show larger amplitudes in their SFR variation than the late-types. Indeed, this prediction is consistent with the observed wider range of the SFR in the early-type sample than in the late-type sample. Thus, in the framework of the limit-cycle model of the ISM, we are able to interpret the difference in the amplitude of SFR variation among the morphological classes of spiral galaxies.Comment: 12 pages LaTeX, to appear in A

    The Global Structure and Evolution of a Self-Gravitating Multi-phase Interstellar Medium in a Galactic Disk

    Get PDF
    Using high resolution, two-dimensional hydrodynamical simulations, we investigate the evolution of a self-gravitating multi-phase interstellar medium in the central kiloparsec region of a galactic disk. We find that a gravitationally and thermally unstable disk evolves, in a self-stabilizing manner, into a globally quasi-stable disk that consists of cold (T < 100 K), dense clumps and filaments surrounded by hot (T > 10^4 K), diffuse medium. The quasi-stationary, filamentary structure of the cold gas is remarkable. The hot gas, characterized by low-density holes and voids, is produced by shock heating. The shocks derive their energy from differential rotation and gravitational perturbations due to the formation of cold dense clumps. In the quasi-stable phase where cold and dense clouds are formed, the effective stability parameter, Q, has a value in the range 2-5. The dynamic range of our multi-phase calculations is 10^6 - 10^7 in both density and temperature. Phase diagrams for this turbulent medium are analyzed and discussed.Comment: 10 pages, 3 figures, ApJ Letters in press (vol. 516

    On the Decelerating Shock Instability of Plane-Parallel Slab with Finite Thickness

    Get PDF
    Dynamical stability of the shock compressed layer with finite thickness is investigated. It is characterized by self-gravity, structure, and shock condition at the surfaces of the compressed layer. At one side of the shocked layer, its surface condition is determined via the ram pressure, while at the other side the thermal pressure supports its structure. When the ram pressure dominates the thermal pressure, we expect deceleration of the shocked layer. Especially, in this paper, we examine how the stratification of the decelerating layer has an effect on its dynamical stability. Performing the linear perturbation analysis, a {\it more general} dispersion relation than the previous one obtained by one of the authors is derived. It gives us an interesting information about the stability of the decelerating layer. Importantly, the DSI (Decelerating Shock Instability) and the gravitational instability are always incompatible. We also consider the evolution effect of the shocked layer. In the early stages of its evolution, only DSI occurs. On the contrary, in the late stages, it is possible for the shocked layer to be unstable for the DSI (in smaller scale) and the gravitational instability (in larger scale). Furthermore, we find there is a stable range of wavenumbers against both the DSI and the gravitational instability between respective unstable wavenumber ranges. These stable modes suggest the ineffectiveness of DSI for the fragmentation of the decelerating slab.Comment: 17 pages, 6 figures. The Astrophysical Journal Vol.532 in pres

    Supernova Explosions in the Early Universe: Evolution of Radiative Remnants and the Halo Destruction Efficiency

    Full text link
    We study the evolution of supernova (SN) remnants of the first stars, taking proper account of the radiative feedback of the progenitor stars on the surroundings. We carry out a series of one-dimensional hydrodynamic simulations with radiative cooling, starting from initial configurations that are drawn from the results of our earlier radiation hydrodynamic simulations of the first HII regions. In low-mass (< 10^6 M_sun) halos, the stellar radiation significantly reduces the ambient gas density prior to the SN explosion. The blastwave quickly propagates over the halo's virial radius, leading to complete evacuation of the gas even with the input energy of 10^50 erg. We find that a large fraction of the remnant's thermal energy is lost in 0.1-10 Myr by line cooling, whereas, for larger explosion energies, the remnant expands even more rapidly with decreasing interior density, and cools predominantly via inverse Compton process. In higher mass halos, the gas density near the explosion site remains high and the SN shock is heavily confined; the thermal energy of the remnant is quickly radiated away by free-free emission, even if the total input energy exceeds the binding energy of halos by two orders of magnitude. We show that the efficiency of halo destruction is determined not only by the explosion energy but also by the gas density profile, and thus controlled by radiative feedback prior to the explosion. Several implications of our results for the formation of first quasars and second-generation stars in the universe are also discussed.Comment: 13 pages, 11 embedded figures. Accepted for publication in Ap

    Formation of Sub-galactic Clouds under UV Background Radiation

    Get PDF
    The effects of the UV background radiation on the formation of sub-galactic clouds are studied by means of one-dimensional hydrodynamical simulations. The radiative transfer of the ionizing photons due to the absorption by HI, HeI and HeII, neglecting the emission, is explicitly taken into account. We find that the complete suppression of collapse occurs for the clouds with circular velocities typically in the range V_c \sim 15-40 km/s and the 50% reduction in the cooled gas mass with V_c \sim 20-55 km/s. These values depend most sensitively on the collapse epoch of the cloud, the shape of the UV spectrum, and the evolution of the UV intensity. Compared to the optically thin case, previously investigated by Thoul & Weinberg (1996), the absorption of the external UV photon by the intervening medium systematically lowers the above threshold values by \Delta V_c \sim 5 km/s. Whether the gas can contract or keeps expanding is roughly determined by the balance between the gravitational force and the thermal pressure gradient when it is maximally exposed to the external UV flux. Based on our simulation results, we discuss a number of implications on galaxy formation, cosmic star formation history, and the observations of quasar absorption lines. In Appendix, we derive analytical formulae for the photoionization coefficients and heating rates, which incorporate the frequency/direction-dependent transfer of external photons.Comment: 38 pages, 16 figures, accepted for publication in Ap

    Effect of cation size variance on spin and orbital order in Eu1−x_{1-x}(La0.254_{0.254}Y0.746_{0.746})x_{x}VO3_3

    Full text link
    We have investigated the RR-ion (RR = rare earth or Y) size variance effect on spin/orbital order in Eu1−x_{1-x}(La0.254_{0.254}Y0.746_{0.746})x_{x}VO3_3. The size variance disturbs one-dimensional orbital correlation in CC-type spin/GG-type orbital ordered states and suppresses this spin/orbital order. In contrast, it stabilizes the other spin/orbital order. The results of neutron and resonant X-ray scattering denote that in the other ordered phase, the spin/orbital patterns are GG-type/CC-type, respectively.Comment: 4 pages, 4 figures, accepted to Rapid Communication in Physical Review

    Chemical Evolution of the Galaxy Based on the Oscillatory Star Formation History

    Get PDF
    We model the star formation history (SFH) and the chemical evolution of the Galactic disk by combining an infall model and a limit-cycle model of the interstellar medium (ISM). Recent observations have shown that the SFH of the Galactic disk violently variates or oscillates. We model the oscillatory SFH based on the limit-cycle behavior of the fractional masses of three components of the ISM. The observed period of the oscillation (∌1\sim 1 Gyr) is reproduced within the natural parameter range. This means that we can interpret the oscillatory SFH as the limit-cycle behavior of the ISM. We then test the chemical evolution of stars and gas in the framework of the limit-cycle model, since the oscillatory behavior of the SFH may cause an oscillatory evolution of the metallicity. We find however that the oscillatory behavior of metallicity is not prominent because the metallicity reflects the past integrated SFH. This indicates that the metallicity cannot be used to distinguish an oscillatory SFH from one without oscillations.Comment: 21 pages LaTeX, to appear in Ap

    Polarization-analyzed resonant inelastic x-ray scattering of the orbital excitations in KCuF3

    Full text link
    We report a Cu K-edge resonant inelastic x-ray scattering (RIXS) study of orbital excitations in KCuF3 . By performing the polarization analysis of the scattered photons, we disclose that the excitation between the eg orbitals and the excitations from t2g to eg exhibit distinct polarization dependence. The polarization dependence of the respective excitations is interpreted based on a phenomenological consideration of the symmetry of the RIXS process that yields a necessary condition for observing the excitations. In addition, we show that the orbital excitations are dispersionless within our experimental resolution.Comment: 5 pages, 3 figure

    The First Supernova Explosions: Energetics, Feedback, and Chemical Enrichment

    Full text link
    We perform three-dimensional smoothed particle hydrodynamics simulations in a realistic cosmological setting to investigate the expansion, feedback, and chemical enrichment properties of a 200 M_sun pair-instability supernova in the high-redshift universe. We find that the SN remnant propagates for a Hubble time at z = 20 to a final mass-weighted mean shock radius of 2.5 kpc (proper), roughly half the size of the HII region, and in this process sweeps up a total gas mass of 2.5*10^5 M_sun. The morphology of the shock becomes highly anisotropic once it leaves the host halo and encounters filaments and neighboring minihalos, while the bulk of the shock propagates into the voids of the intergalactic medium. The SN entirely disrupts the host halo and terminates further star formation for at least 200 Myr, while in our specific case it exerts positive mechanical feedback on neighboring minihalos by shock-compressing their cores. In contrast, we do not observe secondary star formation in the dense shell via gravitational fragmentation, due to the previous photoheating by the progenitor star. We find that cooling by metal lines is unimportant for the entire evolution of the SN remnant, while the metal-enriched, interior bubble expands adiabatically into the cavities created by the shock, and ultimately into the voids with a maximum extent similar to the final mass-weighted mean shock radius. Finally, we conclude that dark matter halos of at least M_vir > 10^8 M_sun must be assembled to recollect all components of the swept-up gas.Comment: 16 pages, 14 figures, published in Ap
    • 

    corecore