614 research outputs found

    Nutrient limitations alter cell division control and chromosome segregation through growth-related kinases and phosphatases

    Get PDF
    In dividing fission yeast Schizosaccharomyces pombe cells, the balance between Wee1 kinase and Cdc25 phosphatase which control the cyclin-dependent kinase (CDK) at the G2–M transition determines the rod-shaped cell length. Under nitrogen source starvation or glucose limitation, however, cell size determination is considerably modulated, and cell size shortening occurs for wild-type cells. For several mutants of kinases or phosphatases, including CDK, target of rapamycin complex (TORC) 1 and 2, stress-responsive mitogen-activated protein kinase (MAPK) Sty1/Spc1, MAPK kinase Wis1, calcium- and calmodulin-dependent protein kinase kinase-like Ssp1, and type 2A and 2A-related phosphatases inhibitor Sds23, this cell shortening does not normally occur. In tor1 and ssp1 mutants, cell elongation is observed. Sds23 that binds to and inhibits 2A and 2A-related phosphatases is synergistic with Ssp1 in the cell size determination and survival under low glucose and nitrogen source. Tor2 (TORC1) is required for growth, whereas Tor1 (TORC2) is needed for determining division size according to different nutrient conditions. Surprisingly, in growth-diminished tor2 mutant or rapamycin-treated cells, the requirement of separase/Cut1-securin/Cut2 essential for chromosome segregation is greatly alleviated. By contrast, defects of tor1 with secruin/cut2 or overproduction of Cut1 are additive. While Tor1 and Tor2 are opposite in their apparent functions, both may actually coordinate cell division with growth in response to the changes in nutrients

    Wurtzite Effects on Spin Splitting of GaN/AlN Quantum Wells

    Full text link
    A new mechanism (DeltaC1-DeltaC3 coupling) is accounted for the spin splitting of wurtzite GaN, which is originated from the intrinsic wurtzite effects (band folding and structure inversion asymmetry). The band-folding effect generates two conduction bands (DeltaC1 and DeltaC3), in which p-wave probability has tremendous change when kz approaches anti-crossing zone. The spin-splitting energy induced by the DeltaC1-DeltaC3 coupling and wurtzite structure inversion asymmetry is much larger than that evaluated by traditional Rashba or Dresselhaus effects. When we apply the coupling to GaN/AlN quantum wells, we find that the spin-splitting energy is sensitively controllable by an electric field. Based on the mechanism, we proposed a p-wave-enhanced spin-polarized field effect transistor, made of InxGa1-xN/InyAl1-yN, for spintronics application.Comment: 12 pages, 4 figures (total 16 pages

    To sit or stand? A preliminary, cross sectional study to investigate if there is a difference in glenohumeral subluxation in sitting or standing in people following stroke

    Get PDF
    Background: Glenohumeral subluxation (GHS) is a common symptom following stroke. Many therapists postulate that GHS may be reduced if the base of support (BOS) is reduced and the centre of mass (COM) is raised as this requires greater postural muscle activity. However, there is little empirical evidence to support this practice. Objective: The aim of this preliminary study was to investigate if the amount of GHS alters from sitting to standing. Study design: A cross sectional, within-subject design in a convenience sample of 15 stroke patients with GHS was utilised. Methods: A prospective design was used with a single blinded tester who assessed GHS using the calliper method in sitting, standing and on return to sitting. Friedman and post hoc Wilcoxon tests showed that GHS was significantly reduced in standing compared to sitting (p <0.05) but this reduction was not maintained on return to sitting (p = 0.25). Conclusions: The results of this study are limited by its small size. However, these results indicate that reducing BOS during rehabilitation may improve GHS after stroke. Whilst the maintenance of benefit is not established, these findings suggest that reducing BOS as part of treatment may help patients with GHS. Further research is now required to replicate these results in a larger sample and to directly examine shoulder muscle activity to investigate which muscles may influence GHS in response to changing BOS. Future work could also aim to determine whether the reduction in GHS was directly attributable to a reduced BOS or the effort associated with moving from sitting to standing

    Anomalous k-dependent spin splitting in wurtzite AlxGa1-xN/GaN heterostructures

    Full text link
    We have confirmed the k-dependent spin splitting in wurtzite AlxGa1-xN/GaN heterostructures. Anomalous beating pattern in Shubnikov-de Haas measurements arises from the interference of Rashba and Dresselhaus spin-orbit interactions. The dominant mechanism for the k-dependent spin splitting at high values of k is attributed to Dresselhaus term which is enhanced by the Delta C1-Delta C3 coupling of wurtzite band folding effect

    Counter-current chromatography for the separation of terpenoids: A comprehensive review with respect to the solvent systems employed

    Get PDF
    Copyright @ 2014 The Authors.This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.Natural products extracts are commonly highly complex mixtures of active compounds and consequently their purification becomes a particularly challenging task. The development of a purification protocol to extract a single active component from the many hundreds that are often present in the mixture is something that can take months or even years to achieve, thus it is important for the natural product chemist to have, at their disposal, a broad range of diverse purification techniques. Counter-current chromatography (CCC) is one such separation technique utilising two immiscible phases, one as the stationary phase (retained in a spinning coil by centrifugal forces) and the second as the mobile phase. The method benefits from a number of advantages when compared with the more traditional liquid-solid separation methods, such as no irreversible adsorption, total recovery of the injected sample, minimal tailing of peaks, low risk of sample denaturation, the ability to accept particulates, and a low solvent consumption. The selection of an appropriate two-phase solvent system is critical to the running of CCC since this is both the mobile and the stationary phase of the system. However, this is also by far the most time consuming aspect of the technique and the one that most inhibits its general take-up. In recent years, numerous natural product purifications have been published using CCC from almost every country across the globe. Many of these papers are devoted to terpenoids-one of the most diverse groups. Naturally occurring terpenoids provide opportunities to discover new drugs but many of them are available at very low levels in nature and a huge number of them still remain unexplored. The collective knowledge on performing successful CCC separations of terpenoids has been gathered and reviewed by the authors, in order to create a comprehensive document that will be of great assistance in performing future purifications. © 2014 The Author(s)

    Hepatocelluar nodules in liver cirrhosis: hemodynamic evaluation (angiography-assisted CT) with special reference to multi-step hepatocarcinogenesis

    Get PDF
    To understand the hemodynamics of hepatocellular carcinoma (HCC) is important for the precise imaging diagnosis and treatment, because there is an intense correlation between their hemodynamics and pathophysiology. Angiogenesis such as sinusoidal capillarization and unpaired arteries shows gradual increase during multi-step hepatocarcinogenesis from high-grade dysplastic nodule to classic hypervascular HCC. In accordance with this angiogenesis, the intranodular portal supply is decreased, whereas the intranodular arterial supply is first decreased during the early stage of hepatocarcinogenesis and then increased in parallel with increasing grade of malignancy of the nodules. On the other hand, the main drainage vessels of hepatocellular nodules change from hepatic veins to hepatic sinusoids and then to portal veins during multi-step hepatocarcinogenesis, mainly due to disappearance of the hepatic veins from the nodules. Therefore, in early HCC, no perinodular corona enhancement is seen on portal to equilibrium phase CT, but it is definite in hypervascular classical HCC. Corona enhancement is thicker in encapsulated HCC and thin in HCC without pseudocapsule. To understand these hemodynamic changes during multi-step hepatocarcinogenesis is important, especially for early diagnosis and treatment of HCCs

    Relevance of circulating nucleosomes and oncological biomarkers for predicting response to transarterial chemoembolization therapy in liver cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transarterial chemoembolization (TACE) therapy is an effective locoregional treatment in hepatocellular cancer (HCC) patients. For early modification of therapy, markers predicting therapy response are urgently required.</p> <p>Methods</p> <p>Here, sera of 50 prospectively and consecutively included HCC patients undergoing 71 TACE therapies were taken before and 3 h, 6 h and 24 h after TACE application to analyze concentrations of circulating nucleosomes, cytokeratin-19 fragments (CYFRA 21-1), alpha fetoprotein (AFP), C-reactive protein (CRP) and several liver biomarkers, and to compare these with radiological response to therapy.</p> <p>Results</p> <p>While nucleosomes, CYFRA 21-1, CRP and some liver biomarkers increased already 24 h after TACE, percental changes of nucleosome concentrations before and 24 h after TACE and pre- and posttherapeutic values of AFP, gamma-glutamyl-transferase (GGT) and alkaline phosphatase (AP) significantly indicated the later therapy response (39 progression versus 32 no progression). In multivariate analysis, nucleosomes (24 h), AP (24 h) and TACE number were independent predictive markers. The risk score of this combination model achieved an AUC of 81.8% in receiver operating characteristic (ROC) curves and a sensitivity for prediction of non-response to therapy of 41% at 97% specificity, and of 72% at 78% specificity.</p> <p>Conclusion</p> <p>Circulating nucleosomes and liver markers are valuable tools for early estimation of the efficacy of TACE therapy in HCC patients.</p
    corecore