1,896 research outputs found

    On the Construction of Polar Codes

    Full text link
    We consider the problem of efficiently constructing polar codes over binary memoryless symmetric (BMS) channels. The complexity of designing polar codes via an exact evaluation of the polarized channels to find which ones are "good" appears to be exponential in the block length. In \cite{TV11}, Tal and Vardy show that if instead the evaluation if performed approximately, the construction has only linear complexity. In this paper, we follow this approach and present a framework where the algorithms of \cite{TV11} and new related algorithms can be analyzed for complexity and accuracy. We provide numerical and analytical results on the efficiency of such algorithms, in particular we show that one can find all the "good" channels (except a vanishing fraction) with almost linear complexity in block-length (except a polylogarithmic factor).Comment: In ISIT 201

    Strong Magnetization Measured in the Cool Cores of Galaxy Clusters

    Full text link
    Tangential discontinuities, seen as X-ray edges known as cold fronts (CFs), are ubiquitous in cool-core galaxy clusters. We analyze all 17 deprojected CF thermal profiles found in the literature, including three new CFs we tentatively identify (in clusters A2204 and 2A0335). We discover small but significant thermal pressure drops below all nonmerger CFs, and argue that they arise from strong magnetic fields below and parallel to the discontinuity, carrying 10%-20% of the pressure. Such magnetization can stabilize the CFs, and explain the CF-radio minihalo connection.Comment: PRL accepted, additional control tests adde

    Recoil-free spectroscopy of neutral Sr atoms in the Lamb-Dicke regime

    Get PDF
    We have demonstrated a recoil-free spectroscopy on the 1S0−3P1{}^1S_0-{}^3P_1 transition of strontium atoms confined in a one-dimensional optical lattice. By investigating the wavelength and polarization dependence of the ac Stark shift acting on the 1S0{}^1S_0 and 3P1(mJ=0){}^3P_1(m_J=0) states, we determined the {\it magic wavelength} where the Stark shifts for both states coincide. The Lamb-Dicke confinement provided by this Stark-free optical lattice enabled the measurement of the atomic spectrum free from Doppler as well as recoil shifts.Comment: 5pages, 4figure

    Sublattice synchronization of chaotic networks with delayed couplings

    Full text link
    Synchronization of chaotic units coupled by their time delayed variables are investigated analytically. A new type of cooperative behavior is found: sublattice synchronization. Although the units of one sublattice are not directly coupled to each other, they completely synchronize without time delay. The chaotic trajectories of different sublattices are only weakly correlated but not related by generalized synchronization. Nevertheless, the trajectory of one sublattice is predictable from the complete trajectory of the other one. The spectra of Lyapunov exponents are calculated analytically in the limit of infinite delay times, and phase diagrams are derived for different topologies

    Stable isochronal synchronization of mutually coupled chaotic lasers

    Full text link
    The dynamics of two mutually coupled chaotic diode lasers are investigated experimentally and numerically. By adding self feedback to each laser, stable isochronal synchronization is established. This stability, which can be achieved for symmetric operation, is essential for constructing an optical public-channel cryptographic system. The experimental results on diode lasers are well described by rate equations of coupled single mode lasers

    Modeling the Influence of Antifreeze Proteins on Three-Dimensional Ice Crystal Melt Shapes using a Geometric Approach

    Get PDF
    The melting of pure axisymmetric ice crystals has been described previously by us within the framework of so-called geometric crystal growth. Nonequilibrium ice crystal shapes evolving in the presence of hyperactive antifreeze proteins (hypAFPs) are experimentally observed to assume ellipsoidal geometries ("lemon" or "rice" shapes). To analyze such shapes we harness the underlying symmetry of hexagonal ice Ih and extend two-dimensional geometric models to three-dimensions to reproduce the experimental dissolution process. The geometrical model developed will be useful as a quantitative test of the mechanisms of interaction between hypAFPs and ice.Comment: 15 pages, 5 figures; Proc. R. Soc. A, Published online before print June 27, 201
    • …
    corecore