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Abstract 

The melting of pure axisymmetric ice crystals has been described previously by 

us within the framework of so-called geometric crystal growth.  Nonequilibrium ice 

crystal shapes evolving in the presence of hyperactive antifreeze proteins (hypAFPs) 

are experimentally observed to assume ellipsoidal geometries (“lemon” or “rice” 

shapes).   To analyze such shapes we harness the underlying symmetry of hexagonal 

ice Ih and extend two-dimensional geometric models to three-dimensions to reproduce 

the experimental dissolution process. The geometrical model developed will be useful 

as a quantitative test of the mechanisms of interaction between hypAFPs and ice.  

 

Introduction 

Understanding how the basic tenets of surface thermodynamics control crystal 

shapes is a major focus of condensed matter science. Using a ubiquitous material like 

ice as a test bed facilitates the advancement of these goals, while having immediate 

relevance to a wide range of applications. By independently controlling the 

temperature and pressure under which an ice crystal is grown, a range of equilibrium 

ice crystal shapes may be formed, from fully faceted surfaces to rough or rounded 

surfaces (1, 2).  

It is rare to observe crystals in equilibrium; usually their shapes are probed in 
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conditions of disequilibrium during which they are growing or melting, however 

slowly.  Understanding the relationship between growth and equilibrium shapes (3) is 

basic to unraveling the kinetic processes on surfaces and their relationship to lower 

dimensional phase transitions, physisorption and chemisorption (2, 4). Equilibrium 

crystal shapes can be determined from the Wulff construction (5), which minimizes 

the surface energy for the fixed total volume of the sample.  This geometrical 

construction requires as specified (or experimentally determined) the specific surface 

free energy  ( ˆ N ) as a function of crystallographic orientation relative to the surface 

normal ˆ N .  For clarity we note that  ( ˆ N ) for a liquid is the surface tension and hence is 

isotropic, independent of the surface normal ˆ N , and single valued.  One then performs the 

transform )ˆ(ˆ NrN    where r


is a radial vector from the origin to the crystal 

surface.  The equilibrium crystal shape emerges by taking the interior envelope of the 

set of planes lying perpendicular to radial rays that intersect the polar plot of  ( ˆ N ).  

The overall size is characterized by  , but the shape is independent of it (3). An 

equilibrium shape may be fully facetted (at low temperatures), it may be fully rough 

(at temperatures exceeding the roughening transitions for all of its facets) or both 

types of surface structure may coexist on a single crystal.  Additionally, one might 

prepare an equilibrium crystal shape and use the Wulff construction to estimate the 

specific surface free energy ( ˆ N ).   However, due to the long relaxation times of 

typical materials, it is experimentally challenging to observe equilibrium crystal 

shapes. Notable successes include crystals of helium in contact with its superfluid 

parent phase, due to the negligible latent heat of fusion and large thermal conductivity 

(6), micron size crystals of metals (7), due to their small sizes and the ability to 

maintain ultra-high vacuum conditions over long periods of time, and ice crystals in 

contact with water in a well designed precision high pressure apparatus (1, 8).     

Knowledge of the kinetic processes of molecular attachment, detachment, and 

surface diffusion and incorporation are fundamental to predicting the evolution of a 

crystal interface on length scales much larger than the lattice parameter.  Of 

significant basic interest and broad applicability is to gain an understanding of the 
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relationship between the macroscopic shape of a pure ice crystal and the microscopic 

behavior of water molecules. Moreover, the growth habits of ice can be influenced by 

impurities or additives such as antifreeze proteins (AFPs) that have specific affinity to 

certain crystallographic planes (9-13).  Thus, quantitative studies of the non-

equilibrium shapes of ice in the presence of AFPs may shed light on the kinetic 

processes underlying their action.  

The driving force for both growth and dissolution is defined as the chemical 

potential difference between  the parent phase and the solid, .  When the drive is 

sufficiently small that gradients in the rate limiting diffusion field possess a 

characteristic length that is large relative to the size of the crystal, then interfacial 

kinetic processes control the shape of the moving interface.   Such a circumstance is 

common in a wide range of systems and settings and is modeled within the framework 

of geometric crystal growth (1, 2, 14, 15).  One can consider geometric crystal growth 

as a kinetically grounded kinematic approach.  This is because the local interfacial 

velocity is specified based on the local crystallographic orientation ˆ N , and on the 

kinetics understood to be associated with it, for a given .  Such approaches are 

successful in two-dimensional (2-D) growth having explained quantitatively the 

evolution of axisymmetric shapes (1, 2).  Here, motivated by experiments involving 

AFPs, which substantially influence the interfacial kinetics and hence overall crystal 

shape, we extend geometric approaches to three dimensions  and focus specifically on 

the shapes of ice crystals during dissolution.  Note that while strictly speaking the 

shapes we model geometrically are dissolution shapes, here we use interchangeably 

dissolution and the more intuitive term melting.  The distinction is irrelevant for either 

the actual shape or the method by which we model it.   

The geometric approach explains the transient evolution of equilibrium forms 

containing both rough and faceted surfaces (14-16).  Because the rough orientations 

lack an interfacial nucleation barrier whereas the faceted orientations grow by an 

activated process, the general growth process is one whereby the rough orientations 

grow out of existence and leave the shape dominated by slow growing facets.  This is 

termed “global kinetic faceting”.  In treating the melting of an initially faceted shape, 

growth–melt asymmetries seen in ice crystals were captured (1).  There, an apparent 

rotation of the principal facets by 30 degrees was explained by the underlying kinetic 



doi:10.1098/rspa.2011.0720  
 

4 | P a g e  
 

anisotropy of V (, ˆ N ) due to step propagation.  Pertaya et al. (12) observed similar 

experimental phenomena in AFP solutions, attributing it to the inhibition of crystal 

growth by AFPs bound to ice crystal surfaces. While the prism facets in pure ice in 

contact with water disappear above -16 oC and at pressures below 160 MPa (1), 

hypAFPs in solution created highly faceted hexagonal ice crystals viewed along the c-

axis and ellipsoidal or “lemon-shaped” prismatic ice crystal faces at normal pressures 

and at temperatures near 0 °C (Figure 1).  Modeling these complex three-dimensional 

shapes requires an extension of two-dimensional geometric models.  Here, such an 

extension has been developed and allows us to simulate the observed hypAFP-

modified shape evolution.   

 

Geometric Crystal Growth 

A small, spatially uniform and steady driving force characterizes near equilibrium 

growth or melting (3) , both of which are described by geometric crystal growth (1-3, 

14-16).  By “small” it is meant that while the drive is large enough to change the 

shape of a crystal, if the drive is removed the shape relaxes to the equilibrium value 

on an experimentally observable time scale.  As in the Wulff construction, where the 

equilibrium shape is determined by the orientation dependence of the specific surface 

free energy ( ˆ N ), in geometric growth or melting the shape is determined by the 

orientation dependence of the local interfacial velocity V (, ˆ N ), itself dependent 

upon the growth drive.  For 2-D growth one describes the surface itself by a time- 

dependent vector )],(),,([ tuytuxC


, in Cartesian coordinates x(u, t),y(u,t) depending 

on an arc-length parameter, u, related to the arc-length s by the metric 

    uCuyux 


 22  in the usual manner; duuCds 


 . Whence, for 

an inward pointing unit normal ˆ N  and an anisotropic velocity functionV (, ˆ N ), the 

surface evolves according to  
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,                 [1] 

 

where we suppress the explicit representation of the Cartesian two-vector because the 

arc-length convention implies reference to a point on an evolving two-dimensional 
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surface.  Note that the time derivative is taken at fixed arc length.  An equivalent 

 

Figure 1. Melting of an ice crystal in the presence of Tenebrio molitor AFP. (a)–(d) melting 

process observed in nanoliter osmometer experiments (17). The formation of the ellipsoidal or 

“lemon” shape is evident viewed perpendicular to the c-axis. The scale bar is 10 µm and the 

times are shown in the figures.    
 

means for dealing with interfacial kinetics as a function of ˆ N  is to characterize that 

direction in terms of the angle   that the surface tangent makes with the positive x  

axis, leading to V (,) . For a given velocity function, the evolution of an initial 

shape is given by the solution to equation [1] using the method of characteristics (15). 

Independent of whether one is describing the evolution of a two-dimensional or 

three-dimensional, as long as the conditions of geometric growth are met, the global 

evolution of an initial crystal is governed by the physics embodied in a local velocity 

function V .  However, a two-dimensional surface bounding a three-dimensional 

crystal must be parameterized by two arc-lengths modifying equation [1] as follows,    

 

C


(u,v, t)

t















u,v

 V ˆ N ,                                       [2] 

 

where the arc-length parameters u and v correspond to the longitudinal and latitudinal 
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positions on the evolving crystal surface.  Thus, by parity of reasoning with the two-

dimensional case, the arc-lengths u and v carry the same information as do the angles 

  and  that define the tangent plane perpendicular to the surface normal ˆ N .  The 

tangent plane is defined by the unit surface tangent ˆ T , whose angle   is measured 

from the positive x  axis, and the unit binormal ˆ B , perpendicular to ˆ T , which has a 

projection onto the equatorial plane taking an angle  relative to the x  axis (figure 

2).  

 

Figure 2. Evolution of a single point on a crystal surface with a normal N̂ , tangent T̂ , and 

binormal B̂ . 

 

Whence, the local normal velocity has the following dependences; V (,,), it is 

intuitive that a unique correspondence between u, v and  ,  exists globally for 

continuous convex shapes. When a discontinuity forms at a corner, the transformation 

is piecewise valid on the continuous regions separating corners.  A surface that 

becomes faceted, and hence has zero curvature, must be treated separately such as 

described in (14), the results of which we extend presently, by rewriting equation [2] 

as 
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described in more detail in the Appendix.  Due to the fact that, for a given driving 

force,V (,,) depends solely on the orientation of the normal, the solution 

C


(,, t)   of equation 3 is given along straight characteristic lines along which the 

normal is preserved;  

 

          [4] 

 

All orientations on the initial surface ),(0 C


 move along characteristic lines and at 

each time t the locus of all points ),,( tC 


 associated with them define the crystal 

shape.  When two characteristics meet, a discontinuity in the surface slope can occur 

which can be described as a shock (14, 16).  The trajectory of these shocks has been 

analyzed in the two-dimensional case (14).  Simply reversing time allows for the 

treatment of melting.   

Now we construct a simple velocity function V (,,) geared towards our 

interests in the anisotropic melting shape of an ice crystal viz.,  

 

)](1)[,,()()(),,(   rf VVV ,            [5] 

 

where Vf  is the velocity normal to faceted surfaces, such as the basal plane, and Vr  is 

that along rough surfaces, such as all prismatic planes which here become rough over 

time.  The function ( ) captures the transition from faceted to rough growth along 

the surface and is periodic with a period of n and thus continuously varies between 

zero and one; 0  ( ) 1.  For simplicity, we chose ()  cosm (n /2), where m is 

an even integer.  Motion of a molecularly rough interface is not hindered by activated 

processes, such as is the case at a facet, because for growth or melting there is no 

nucleation barrier; the surface can be thought of heuristically as a liquid-vapor 

interface.  Whence, Vr  is a relatively simple function of the growth drive , which 

under experimental conditions is either proportional to the undercooling at fixed 

pressure or the overpressure at fixed temperature (1, 8, 16).  Using the intuition 
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gleaned from both growth and melting studies of pure materials (1, 15, 16), we extend 

the linear response regime to the two-dimensional surface as follows;  

                                                

                                                     [6]  

in which the linear response is shown in the first term with the growth drive scaled by 

a constant cr. Moving along a surface from rough orientations towards vicinal 

orientations, the normal motion of an interface is influenced both by detachment of 

molecules along with the migration of surface molecules away from the facets (1, 15).  

This behavior is captured by the two angle dependent terms, in which p and q are 

even integers, and m  p,q.  

In the experiments reported here and elsewhere (1, 8, 16) it is seen that ice crystal 

shapes are two-fold symmetric parallel to the basal plane and six fold symmetric 

about the c-axis, and hence we take the simplest form of equation 6 that describes the 

symmetry of the crystal; p  q  2, n  2  and n  6   (Figure 3).  Under the 

conditions of geometric growth or melting, wherein the driving force is weak, 

Vf Vr , and hence for example the advance of the basal plane is much slower than 

that of the prismatic planes in experiments.  

Given an initial shape, each point on the crystal advances according to the 

orientation of the surface. Depending on the initial shape, trajectories of two points 

may collide in a shock event (14, 16), according to the rubric of the method of 

characteristics. When a shock occurs, the participating characteristic orientations are 

eliminated from the crystal surface (14). The right hand side of equation 4 displays 

the wide range of possibilities, depending on the initial shape and the detailed form of  

V (,,), for shock formation.  

 

Results 

Experiments on ice crystal growth in the presence of hypAFPs revealed highly 

faceted crystals in the basal plane (17). AFPs inhibit ice crystals from growing within 

a certain temperature range, thereby decreasing the freezing point below the 

equilibrium melting temperature (9). When crystals grown in solutions containing 

AFPs are continuously cooled and the magnitude of the freezing point is exceeded, 

sudden and rapid growth occurs due to the magnitude of supercooling imposed. In 

contrast, melting  can be controlled using relatively small temperature gradients, and 

shape evolution is  readily observed under a microscope (18). We used the three-

,
2

cos1
2

cos1),,,( 

























 
nn

cV qp

rr



doi:10.1098/rspa.2011.0720  
 

9 | P a g e  
 

dimensional model described above to simulate the melting process and to 

demonstrate how ice crystals melt in hypAFP solutions.  

 

 

Figure 3.  The three-dimensional velocity structure shown in terms of the cartesian velocity 

components (Vx, Vy, Vz). The velocity parameters are cr Δµ=0.48 µm/sec and Vf = 0.08 

µm/sec.  The reversal of time to treat dissolution is equivalent to reversing the sign of this 

velocity as was done for the simulations shown in figures 4 and 5. The color from dark blue to 

red indicates the variation of the angle θ from 0 to 180 degrees. 

 

The parameters were chosen to fit the simulation results to the experimental results of 

melting of crystals in Tenebrio molitor AFP (TmAFP) solutions. We note that in such 

a manner comparison with other AFP solutions will offer future insight into system 

specificity versus generality of this approach. 

Figure 4 shows model results of a dissolving ice crystal viewed parallel to the c-

axis.  As time progresses, the initially rounded shape evolves into a hexagonal 

structure and the faceted basal plane diminishes in overall area.  This is a 

transformation commonly observed in nanoliter osmometer experiments with TmAFP 

solutions (17), distinct from the pure case in which the basal facet is maintained (8).  

Figure 5 displays the evolution perpendicular to the c-axis. The oblate spheroidal, 

or “drum-like”, initial shape forms ridges during melting.  The relatively slow 
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ablation normal to the basal plane creates a dynamically faceted oblate spheroid of the 

opposite aspect ratio that we refer to as a truncated lemon.  Such an evolution is seen 

in the experimental observations shown in Figure 1. Clearly, the morphology of these 

crystal surfaces is not arbitrary, but arises from a general set of underlying rules. 

Finally, as is seen particularly well in Figures 5 (c) and (d), regions of the crystal 

become faceted during ablation and hence their local curvature must decrease.  

 

 
Figure 4. Computer generated model of a melting shape that results from the velocity profile 

that is described in Figure 3, viewed along the c-axis starting from an oblate spheroidal shape. 

A view along the c-axis reveals the shapes at four points in time (a) 0 sec (b) 8 sec (c) 18 sec 

(d) 22 sec. The clear hexagonal shape of the 3-D model is in agreement with experiments 

(17). 

 

The evolution of the local curvature on certain regions of a crystal surface in which 

only one of the principal orientations is important can be analyzed in ostensibly the 

same manner as in 2-D (1, 14-16).  For example, this might be treated by fixing the 

angle  associated with the binormal ˆ B  and solving a local equation for the curvature 

  as a function of the angle   associated with the tangent ˆ T  for a one-dimensional 

boundary viz.,  
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


 
2 ˜ V   .                [7] 

 

In this equation   is taken at constant  , the so-called “velocity stiffness” 


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
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
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2

2~


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
V

VV  is determined at fixed , which is, mutatis mutandis, the same as 

in (15). Whence, for fixed , the evolution of the curvature as a function of   from 

the initial value I  is  

 







 VI

I ~
1

 .                [8] 

 

We note however that any local axisymmetry of the two-dimensional surface that 

allows this heuristic interpretation of the observed curvature decrease will in general 

be limited to a finite time interval. After such time it is possible that the curvature 

evolution in the other direction will intervene, as well as issues associated with the 

formation of shocks associated with regions on the surface with negative surface 

stiffness as discussed above and in (1, 14-16). 

 

 

Figure 5. Computer generated model of the melting shape in figure 4 viewed along the a-axis 

at (a) 0 sec (b) 8 sec (c) 18 sec (d) 22 sec. The initial “drum” shape evolves into a “faceted 

lemon” which maintains the same form as it disappears, as is seen in the experimental 

observations shown in Figure 1. 
 



doi:10.1098/rspa.2011.0720  
 

12 | P a g e  
 

Conclusions 

We have extended two-dimensional geometric models for crystal growth and 

melting to three-dimensions and have examined the implications for the problem of 

ice crystals melting (dissolving) in solutions of hyperactive antifreeze proteins 

(hypAFPs).  It is found that, consistent with observations of ice crystals in solutions of 

TmAFP, initially rounded crystals melted to form stable faceted “lemon shapes”. The 

detailed morphology of such shapes is expected to depend on environmental 

conditions, such as the thermal hysteresis promoted by the AFP, the concentration of 

AFP, and the driving force, all of which affect the underlying velocity function 

V (,,).  Indeed, having demonstrated the ability of geometric theories to capture 

detailed morphological changes in this complex system, the next stage of research 

aims at systematically testing the environmental influences on V (,,).  In this 

manner, refinement of both model structure and protein-ice interactions is possible.   

Importantly, such an approach provides quantitative insight concerning how 

macroscopic shapes are controlled by the mechanisms of dissolution and melting as 

they are modified by the presence of AFPs. 
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Appendix A: Derivation of the three-dimensional model 

 

The approach here is a straightforward extension of Tsemekhman and Wettlaufer (14) 

and thus we provide here only the major waypoints sufficient to allow the reader to 

follow the logic.  The evolution equation [2] is  

 

C


(u,v, t)

t















u,v

 V ˆ N 

                                                                                              [A1] 

where the arc-length parameters u and v correspond to the longitudinal and latitudinal 

positions corresponding to angles   and   that define the tangent plane perpendicular 

to the surface normal ˆ N . The plane is collinear with the unit surface tangent ˆ T , whose 

angle   is measured from the positive x  axis, and the unit binormal ˆ B , 

perpendicular to ˆ T , which has a projection onto the equatorial plane taking an angle 

  relative to the x  axis (figure 2).  In terms of u and v we write the usual arc lengths 

as 
duuCds

v
u 




 and 
dvvCds

u
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


, and with the use of 
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


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












,                         [A2] 

 

a reparameterization of the surface is generalized from (14) as 
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.                               [A3] 
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doi:10.1098/rspa.2011.0720  
 

14 | P a g e  
 

Here κ  (θ, t) is a compact form of the curvature as a function of   and t for fixed   

and the same nomenclature follows, the obvious changes being made, for κ (, t). 

Combining equations [A2], [A3], and [A4] yields 
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The appropriate generalization of equation (4) from (14) gives the pair 
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Combining equations [A5] and [A6] yields  
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which is equation 3, the solution to which is equation [4]. 
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