27 research outputs found

    Enabling interactive safety and performance trade-offs in early airframe systems design

    Get PDF
    Presented is a novel interactive framework for incorporating both safety and performance analyses in early systems architecture design, thus allowing the study of possible trade-offs. Traditionally, a systems architecture is first defined by the architects and then passed to experts, who manually create artefacts such as Fault Tree Analysis (FTA) for safety assessment, or computational workflows, for performance assessment. The downside of this manual approach is that if the architect modifies the systems architecture, most of the process needs to be repeated, which is tedious and time consuming. This limits the exploration of the design space, with the associated risk of missing better architectures. To overcome this limitation, the proposed framework automates parts of the safety and performance analysis in the context of the Requirement, Functional, Logical, and Physical (RFLP) systems engineering paradigm. Safety analysis is carried out by automatic creation of FTA models from the functional and logical flow views. Regarding performance analysis, computational workflows are first automatically created from the logical flow view, and then executed for a set of flight conditions over the range of the mission in order to determine the most demanding condition. Finally, performance characteristics of the subsystems, such as weights, power offtakes, ram drag etc. are evaluated at the most demanding flight condition, which enables the architect to compare architectures at aircraft level. The framework is illustrated with a representative example involving the design of an environmental control system of a civil aircraft, where the safety and performance trade-off is conducted for multiple ECS architectures

    Influence of band width on the scattered ion yield spectra of a He + Ion by resonant or quasi-resonant charge exchange neutralization

    Get PDF
    The influence of the band structure, especially the bandwidth, on the scattered ion yield spectra of a He+ ion by the resonant or quasi-resonant neutralization was theoretically examined using quantum rate equations. When calculating the scattered ion yield spectra of He+ to simulate the experimental data, we observed that the band structure, especially the bandwidth, had a strong influence on the spectra at relatively low incident He+ ion energies of less than several hundred eV. Through many simulations, it was determined that theoretical calculations that include bandwidth calculation can simulate or reproduce the experimentally observed spectra of He+-In, He+-Ga, and He+-Sn systems. In contrast, simulations not including bandwidth simulation could neither reproduce nor account for such spectra. Furthermore, the calculated ion survival probability (ISP) at low incident ion energies tended to decrease with increasing bandwidth. This decrease in ISP probably corresponds to the relatively small scattered ion yield usually observed at low incident ion energies. Theoretically, such a decrease indicates that a He+ ion with a low incident energy can be easily neutralized on the surface when the bandwidth is large

    Fatty acid composition of twelve algae from the Coastal Zones of Qatar

    No full text
    Fatty acid composition of twelve algal species from two different classes were determined. Three Chlorophyta species(Axetabularia calyxulux, Cladophors sericoides and Dictyosphaeria cavernosa) and nine Phaephyta species (Colpomenia sinuosa, Cystoseria trinodis, Dictyota cericornis, Hormophysa triquetra, Padina gymnospora, Sargassum binderi, S. boveanum, S. denticulatum and S, heteromorpha) were investigated. Thirty-four fatty acids were identified. Myristic, palmitic, oleic, linoleic, eicosodienic and lignoceric acids were predominant in all examined algal species. Branched saturated fatty acids were also found in all invistigatd species except Cladophors sericoides
    corecore