7 research outputs found

    Phenolic compounds with antioxidant properties from canola meal extracts inhibit adipogenesis

    No full text
    The extraction of phenolic compounds from canola meal produces functional health products and renders the canola meal a more digestible animal feed. The extracted phenolics may have novel bioactivity worth investigation. In this study, several solvents were evaluated for their ability to extract phenolic compounds from canola meal: Water (WE) and various 80% organic solvent/water mixtures of methanol (ME), acetone (AE), ethanol (EE), butanol (BE), chloroform (CE) and hexane (HE). The in vitro antioxidant and anti-obesity properties of various extracts were investigated. Anti-obesity properties were studied using adipogenic differentiation inhibition of a murine mesenchymal stem cell line (C3H10T1/2) and a pancreatic lipase inhibition assay. AE, ME, and BE showed significant (p < 0.05) adipogenesis and pancreatic lipase inhibitory activities and may have more pharmacological properties. AE down-regulated the gene expression of the major adipogenic transcription factor, peroxisome proliferator-activated receptor gamma (PPAR), correlating to phenolic content in a dose-dependent manner. The chemical characterization of AE revealed the presence of sinapic acid, ferulic acid, and kaempferol derivatives as main bioactive phenols. © 2019 by the authors. Licensee MDPI, Basel, Switzerland

    A pilot study of the Leicester ED medical infrared imaging protocol in fever and sepsis.

    No full text
    BACKGROUND: Medical Infrared Imaging (MII) is an investigative method that can be potentially used in emergency care to non-invasively detect thermal signatures associated with change in blood flow. We have developed a protocol for the use of MII in the Emergency Department (ED) and shown that it is feasible. To derive initial data for sample size calculations, we performed an exploratory study in patients with fever and sepsis. METHODS: The Leicester MII protocol was used to image the temperature patterns along the arm among three patient groups (control, fever and sepsis) of a total 56 patients. Anatomical markers were used to divide this gradient into upper arm, forearm, hand and finger regions. Variations in measurements within and between these regions were described. RESULTS: The thermal gradient down the arm was successfully extracted in all patients. The distribution of values in each region of the arm was described in control, fever and sepsis patients. There was a significant gradient between upper arm and finger in controls (2.75, p < 0.0001), but no gradient in fever (p = 0.944) or sepsis (p = 0.710). This was reflected in the finger/arm difference, which was of -2.74°C (±3.50) in controls, -0.39C (±2.48) in fever, and -1.80°C (±3.09) in sepsis. CONCLUSIONS: This study found different thermal gradients along the arm in control and febrile groups, and defined the degree of individual variation. It is likely that the difference between upper arm temperature and finger temperature (representing the temperature gradient down the arm) may be more useful than absolute measurements in future studies

    Feasibility of Medical Infrared Imaging in the Emergency Department

    Full text link
    Background: Medical Infrared Imaging (MII) is an investigative method that can be used to non-invasively detect specific heat signatures associated with disease. There is the potential for this technique to be used in emergency care, and we have developed a protocol for the use of MII in the Emergency Department (ED). However, it is not known if this procedure is feasible in an ED setting. Methods: The Leicester MII protocol was used to image the arm in 68 Emergency Department patients. Feasibility was assessed by the proportion of patients with successful image acquisition. Results: When the protocol was used in the ED, images were obtained in 100% of subjects. Conclusions: It is feasible to undertake MII in an ED setting. A standardised, yet practical protocol has been successfully developed and feasibility tested. This ‘Leicester ED MII Protocol’ is proposed as the standard for future thermography in emergency care, to allow studies to be comparable

    Nutritional and therapeutic properties of barley broth (Talbinah): recent updates

    No full text
    Barley broth (Talbinah) is prepared by combining barley syrup, milk, and honey. The Prophet Mohammad (PBUH) recommended Talbinah for sadness and heart relief in sorrows. Talbinah has a promising nutritional and therapeutic impact on human health. It is a rich source of many nutrients and some bioactive moieties. Regular consumption imparts in maintaining better gut and acts as anti-depressive, anti-diabetic, anti-oxidant, anti-inflammatory, antidiabetic and antihypercholesterolemic. Moreover, it is the most effective food for supplying nutrients and removing toxins from human cells. In this review, the production technology, nutrition, therapeutic potential, proposed prospects, role as a functional food and current knowledge on the subject have been discussed comprehensively. Conclusively, Talbinah as functional food could be a way in preventing various health maladies

    Nutritional and therapeutic properties of barley broth (Talbinah): recent updates

    No full text
    Barley broth (Talbinah) is prepared by combining barley syrup, milk, and honey. The Prophet Mohammad (PBUH) recommended Talbinah for sadness and heart relief in sorrows. Talbinah has a promising nutritional and therapeutic impact on human health. It is a rich source of many nutrients and some bioactive moieties. Regular consumption imparts in maintaining better gut and acts as anti-depressive, anti-diabetic, anti-oxidant, anti-inflammatory, antidiabetic and antihypercholesterolemic. Moreover, it is the most effective food for supplying nutrients and removing toxins from human cells. In this review, the production technology, nutrition, therapeutic potential, proposed prospects, role as a functional food and current knowledge on the subject have been discussed comprehensively. Conclusively, Talbinah as functional food could be a way in preventing various health maladies

    RF-CNN-F: random forest with convolutional neural network features for coronary artery disease diagnosis based on cardiac magnetic resonance

    No full text
    Coronary artery disease (CAD) is a prevalent disease with high morbidity and mortality rates. Invasive coronary angiography is the reference standard for diagnosing CAD but is costly and associated with risks. Noninvasive imaging like cardiac magnetic resonance (CMR) facilitates CAD assessment and can serve as a gatekeeper to downstream invasive testing. Machine learning methods are increasingly applied for automated interpretation of imaging and other clinical results for medical diagnosis. In this study, we proposed a novel CAD detection method based on CMR images by utilizing the feature extraction ability of deep neural networks and combining the features with the aid of a random forest for the very first time. It is necessary to convert image data to numeric features so that they can be used in the nodes of the decision trees. To this end, the predictions of multiple stand-alone convolutional neural networks (CNNs) were considered as input features for the decision trees. The capability of CNNs in representing image data renders our method a generic classification approach applicable to any image dataset. We named our method RF-CNN-F, which stands for Random Forest with CNN Features. We conducted experiments on a large CMR dataset that we have collected and made publicly accessible. Our method achieved excellent accuracy (99.18%) using Adam optimizer compared to a stand-alone CNN trained using fivefold cross validation (93.92%) tested on the same dataset

    The burden of bacterial antimicrobial resistance in the WHO European region in 2019: a cross-country systematic analysis

    No full text
    Background: Antimicrobial resistance (AMR) represents one of the most crucial threats to public health and modern health care. Previous studies have identified challenges with estimating the magnitude of the problem and its downstream effect on human health and mortality. To our knowledge, this study presents the most comprehensive set of regional and country-level estimates of AMR burden in the WHO European region to date.  Methods: We estimated deaths and disability-adjusted life-years attributable to and associated with AMR for 23 bacterial pathogens and 88 pathogen–drug combinations for the WHO European region and its countries in 2019. Our methodological approach consisted of five broad components: the number of deaths in which infection had a role, the proportion of infectious deaths attributable to a given infectious syndrome, the proportion of infectious syndrome deaths attributable to a given pathogen, the percentage of a given pathogen resistant to an antimicrobial drug of interest, and the excess risk of mortality (or duration of an infection) associated with this resistance. These components were then used to estimate the disease burden by using two counterfactual scenarios: deaths attributable to AMR (considering an alternative scenario where infections with resistant pathogens are replaced with susceptible ones) and deaths associated with AMR (considering an alternative scenario where drug-resistant infections would not occur at all). Data were solicited from a wide array of international stakeholders; these included research hospitals, surveillance networks, and infection databases maintained by private laboratories and medical technology companies. We generated 95% uncertainty intervals (UIs) for final estimates as the 25th and 975th ordered values across 1000 posterior draws, and models were cross-validated for out-of-sample predictive validity.  Findings: We estimated 541 000 deaths (95% UI 370 000–763 000) associated with bacterial AMR and 133 000 deaths (90 100–188 000) attributable to bacterial AMR in the whole WHO European region in 2019. The largest fatal burden of AMR in the region came from bloodstream infections, with 195 000 deaths (104 000–333 000) associated with resistance, followed by intra-abdominal infections (127 000 deaths [81 900–185 000]) and respiratory infections (120 000 deaths [94 500–154 000]). Seven leading pathogens were responsible for about 457 000 deaths associated with resistance in 53 countries of this region; these pathogens were, in descending order of mortality, Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecium, Streptococcus pneumoniae, and Acinetobacter baumannii. Methicillin-resistant S aureus was shown to be the leading pathogen–drug combination in 27 countries for deaths attributable to AMR, while aminopenicillin-resistant E coli predominated in 47 countries for deaths associated with AMR.  Interpretation: The high levels of resistance for several important bacterial pathogens and pathogen–drug combinations, together with the high mortality rates associated with these pathogens, show that AMR is a serious threat to public health in the WHO European region. Our regional and cross-country analyses open the door for strategies that can be tailored to leading pathogen–drug combinations and the available resources in a specific location. These results underscore that the most effective way to tackle AMR in this region will require targeted efforts and investments in conjunction with continuous outcome-based research endeavours. </p
    corecore