1,352 research outputs found

    Effect of Pressure on the Activity Coefficients of Au and Other Siderophile Elements in Liquid Fe-Si Alloys

    Get PDF
    Light elements can alloy into the iron cores of terrestrial planetary bodies. It is estimated that the Earths core contains ~10% of a light element, most likely a combination of S, C, Si, and O with Si probably being the most abundant. Si dissolved into Fe metal liquids can have a significant influence on the activity coefficients of siderophile elements, and thus the partitioning behavior of those elements between the core and mantle. Many of these elements have been investigated extensively at ambient pressure, and studies up to 1 GPa are becoming more common, but few have been studied at pressures above this. The formation of the Earths core has been estimated to have formed at pressures between 40-60 GPa, so investigating the effect pressure has on Sis influence on siderophile element partitioning is important for modeling core formation in the Earth and smaller planets. Pressure is well known to influence volumetric properties of metallic and silicate liquids, and oxygen fugacity (e.g., [10,11]), but less is known about its effect on activity coefficients (e.g., [12]). Some activity coefficients depend strongly upon the Si content of Fe liquids, and the concentration of siderophile elements such as P, Sb, and As in the terrestrial mantle is easily influenced by dissolved Si in the core. Thus, isolating the effect of pressure on activity coefficients in general is critical in quantitative analysis of core formation models. In this work, we investigate the effect variable Si content has on the partitioning of Au between Fe metal and silicate melt at 10 GPa and 2373 K, with the intention of comparing the behavior to that already investigated at lower pressures. In addition, P, V, Mn, Ga, Zn, Cd, Sn, W, Pb, and Nb were also measured and could thus be included in the assessment of potential pressure effects

    Floating-disk parylene microvalve for self-regulating biomedical flow controls

    Get PDF
    A novel self-regulating parylene micro valve is presented in this paper with potential applications for biomedical flow controls. Featuring a free-floating bendable valve disk and two-level valve seat, this surface-micromachined polymeric valve accomplishes miniature pressure/flow rate regulation in a band-pass profile stand-alone without the need of power sources or active actuation. Experimental data of underwater testing results have successfully demonstrated that the microfabricated in-channel valve can regulate water flow at 0-80 mmHg and 0-10 µL/min pressure/flow rate level, which is perfectly suitable for biomedical and lab-on-a-chip applications. For example, such biocompatible microvalve can be incorporated in ocular implants for control of eye fluid drainage to fulfill intraocular pressure (IOP) regulation in glaucoma patients

    Microfabricated Implantable Parylene-Based Wireless Passive Intraocular Pressure Sensors

    Get PDF
    This paper presents an implantable parylene-based wireless pressure sensor for biomedical pressure sensing applications specifically designed for continuous intraocular pressure (IOP) monitoring in glaucoma patients. It has an electrical LC tank resonant circuit formed by an integrated capacitor and an inductor coil to facilitate passive wireless sensing using an external interrogating coil connected to a readout unit. Two surface-micromachined sensor designs incorporating variable capacitor and variable capacitor/inductor resonant circuits have been implemented to realize the pressure-sensitive components. The sensor is monolithically microfabricated by exploiting parylene as a biocompatible structural material in a suitable form factor for minimally invasive intraocular implantation. Pressure responses of the microsensor have been characterized to demonstrate its high pressure sensitivity (> 7000 ppm/mmHg) in both sensor designs, which confirms the feasibility of pressure sensing with smaller than 1 mmHg of resolution for practical biomedical applications. A six-month animal study verifies the in vivo bioefficacy and biostability of the implant in the intraocular environment with no surgical or postoperative complications. Preliminary ex vivo experimental results verify the IOP sensing feasibility of such device. This sensor will ultimately be implanted at the pars plana or on the iris of the eye to fulfill continuous, convenient, direct, and faithful IOP monitoring

    Implantable Unpowered Parylene MEMS Intraocular Pressure Sensor

    Get PDF
    This paper presents the first implantable, unpowered, parylene-based micro-electro-mechanical-systems (MEMS) pressure sensor for intraocular pressure (IOP) sensing. From in situ mechanical deformation of the compliant structures, this sensor registers pressure variations without power consumption/transduction. Micromachined high-aspect-ratio thin-walled tubes in different geometric layouts are exploited to obtain a high-sensitivity pressure response. An integrated packaging method has been successfully developed to realize suture-less implantation of the device. In vitro testing results have demonstrated that the IOP sensor can achieve 0.67 degree/mmHg angular sensitivity with a spiral-tube design, 3.43 µm/mmHg lateral sensitivity with a long-armed-tube design, and 0.38 µm/mmHg longitudinal sensitivity with a serpentine-tube design. This IOP sensor is designed to be implanted in the anterior chamber of the eye and anchored directly on the iris so that, under incident visible light, the pressure response of the implant can be directly observed from outside the eye, which enables faithful and unpowered IOP monitoring in glaucoma patient

    Finding Temporally Consistent Occlusion Boundaries in Videos using Geometric Context

    Full text link
    We present an algorithm for finding temporally consistent occlusion boundaries in videos to support segmentation of dynamic scenes. We learn occlusion boundaries in a pairwise Markov random field (MRF) framework. We first estimate the probability of an spatio-temporal edge being an occlusion boundary by using appearance, flow, and geometric features. Next, we enforce occlusion boundary continuity in a MRF model by learning pairwise occlusion probabilities using a random forest. Then, we temporally smooth boundaries to remove temporal inconsistencies in occlusion boundary estimation. Our proposed framework provides an efficient approach for finding temporally consistent occlusion boundaries in video by utilizing causality, redundancy in videos, and semantic layout of the scene. We have developed a dataset with fully annotated ground-truth occlusion boundaries of over 30 videos ($5000 frames). This dataset is used to evaluate temporal occlusion boundaries and provides a much needed baseline for future studies. We perform experiments to demonstrate the role of scene layout, and temporal information for occlusion reasoning in dynamic scenes.Comment: Applications of Computer Vision (WACV), 2015 IEEE Winter Conference o

    Chalcophile Element Constraints on the Sulfur Content of the Martian Mantle

    Get PDF
    The sulfur content of the Martian mantle is critical to understanding volcanic volatiles supplied to the surface of Mars and possibly climate. In the absence of Martian mantle rocks, sulfur content of the mantle has been inferred from S contents of Martian meteorites or from sedimentary sulfate abundances. Estimates of the sulfur content of the Martian mantle vary from 390-2,000 ppm, all of which are higher than that of the terrestrial mantle (~250 ppm;). Residual sulfide in the Martian mantle controls the distribution of chalcophile elements during partial melting. In this study, we report new analyses of Martian meteorites, and use the incompatible behavior of As, Tl and Pb to infer the sulfide mode of the Martian mantle using a different set of assumptions than those of prior studies

    Implantable micromechanical parylene-based pressure sensors for unpowered intraocular pressure sensing

    Get PDF
    This paper presents the first implantable, unpowered, parylene-based microelectromechanical system (MEMS) pressure sensor for intraocular pressure (IOP) sensing. From in situ mechanical deformation of the compliant spiral-tube structures, this sensor registers pressure variations without electrical or powered signal transduction of any kind. Micromachined high-aspect-ratio polymeric hollow tubes with different geometric layouts are implemented to obtain high-sensitivity pressure responses. An integrated device packaging method has been developed toward enabling minimally invasive suture-less needle-based implantation of the device. Both in vitro and ex vivo device characterizations have successfully demonstrated mmHg resolution of the pressure responses. In vivo animal experiments have also been conducted to verify the biocompatibility and functionality of the implant fixation method inside the eye. Using the proposed implantation scheme, the pressure response of the implant can be directly observed from outside the eye under visible light, with the goal of realizing convenient, direct and faithful IOP monitoring in glaucoma patients

    Implantable parylene-based wireless intraocular pressure sensor

    Get PDF
    This paper presents a novel implantable, wireless, passive pressure sensor for ophthalmic applications. Two sensor designs incorporating surface-micromachined variable capacitor and variable capacitor/inductor are implemented to realize the pressure sensitive components. The sensor is monolithically microfabricated using parylene as a biocompatible structural material in a suitable form factor for increased ease of intraocular implantation. Pressure responses of the microsensor are characterized on-chip to demonstrate its high pressure sensitivity (> 7000 ppm/mmHg) with mmHg level resolution. An in vivo animal study verifies the biostability of the sensor implant in the intraocular environment after more than 150 days. This sensor will ultimately be implanted at the pars plana or iris of the eye to fulfill continuous intraocular pressure (IOP) monitoring in glaucoma patients
    corecore