333 research outputs found

    Metallicity of the SrTiO3 surface induced by room temperature evaporation of alumina

    Full text link
    It is shown that a metallic state can be induced on the surface of SrTiO3 crystals by the electron beam evaporation of oxygen deficient alumina or insulating granular aluminium. No special preparation nor heating of the SrTiO3 surface is needed. Final metallic or insulating states can be obtained depending on the oxygen pressure during the evaporation process. Photoconductivity and electrical field effect are also demonstrated.Comment: 8 pages, 3 figure

    Electronically coupled complementary interfaces between perovskite band insulators

    Full text link
    Perovskite oxides exhibit a plethora of exceptional electronic properties, providing the basis for novel concepts of oxide-electronic devices. The interest in these materials is even extended by the remarkable characteristics of their interfaces. Studies on single epitaxial connections between the two wide-bandgap insulators LaAlO3 and SrTiO3 have revealed them to be either high-mobility electron conductors or insulating, depending on the atomic stacking sequences. In the latter case they are conceivably positively charged. For device applications, as well as for basic understanding of the interface conduction mechanism, it is important to investigate the electronic coupling of closely-spaced complementary interfaces. Here we report the successful realization of such electronically coupled complementary interfaces in SrTiO3 - LaAlO3 thin film multilayer structures, in which the atomic stacking sequence at the interfaces was confirmed by quantitative transmission electron microscopy. We found a critical separation distance of 6 perovskite unit cell layers, corresponding to approximately 2.3 nm, below which a decrease of the interface conductivity and carrier density occurs. Interestingly, the high carrier mobilities characterizing the separate electron doped interfaces are found to be maintained in coupled structures down to sub-nanometer interface spacing

    Understanding the nature of electronic effective mass in double-doped SrTiO3_{3}

    Full text link
    We present an approach to tune the effective mass in an oxide semiconductor by a double doping mechanism. We demonstrate this in a model oxide system Sr1x_{1-x}Lax_xTiO3δ_{3-\delta}, where we can tune the effective mass ranging from 6--20me\mathrm{m_e} as a function of filling or carrier concentration and the scattering mechanism, which are dependent on the chosen lanthanum and oxygen vacancy concentrations. The effective mass values were calculated from the Boltzmann transport equation using the measured transport properties of thin films of Sr1x_{1-x}Lax_xTiO3δ_{3-\delta}. Our method, which shows that the effective mass decreases with carrier concentration, provides a means for understanding the nature of transport processes in oxides, which typically have large effective mass and low electron mobility, contrary to the tradional high mobility semiconductors.Comment: 5 pages with 4 figure

    Overfitting for Fun and Profit: Instance-Adaptive Data Compression

    Get PDF
    Neural data compression has been shown to outperform classical methods in terms of RDRD performance, with results still improving rapidly. At a high level, neural compression is based on an autoencoder that tries to reconstruct the input instance from a (quantized) latent representation, coupled with a prior that is used to losslessly compress these latents. Due to limitations on model capacity and imperfect optimization and generalization, such models will suboptimally compress test data in general. However, one of the great strengths of learned compression is that if the test-time data distribution is known and relatively low-entropy (e.g. a camera watching a static scene, a dash cam in an autonomous car, etc.), the model can easily be finetuned or adapted to this distribution, leading to improved RDRD performance. In this paper we take this concept to the extreme, adapting the full model to a single video, and sending model updates (quantized and compressed using a parameter-space prior) along with the latent representation. Unlike previous work, we finetune not only the encoder/latents but the entire model, and - during finetuning - take into account both the effect of model quantization and the additional costs incurred by sending the model updates. We evaluate an image compression model on I-frames (sampled at 2 fps) from videos of the Xiph dataset, and demonstrate that full-model adaptation improves RDRD performance by ~1 dB, with respect to encoder-only finetuning.Comment: Accepted at International Conference on Learning Representations 202

    Magnetic effects at the interface between nonmagnetic oxides

    Get PDF
    The electronic reconstruction at the interface between two insulating oxides can give rise to a highly-conductive interface. In analogy to this remarkable interface-induced conductivity we show how, additionally, magnetism can be induced at the interface between the otherwise nonmagnetic insulating perovskites SrTiO3 and LaAlO3. A large negative magnetoresistance of the interface is found, together with a logarithmic temperature dependence of the sheet resistance. At low temperatures, the sheet resistance reveals magnetic hysteresis. Magnetic ordering is a key issue in solid-state science and its underlying mechanisms are still the subject of intense research. In particular, the interplay between localized magnetic moments and the spin of itinerant conduction electrons in a solid gives rise to intriguing many-body effects such as Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions, the Kondo effect, and carrier-induced ferromagnetism in diluted magnetic semiconductors. The conducting oxide interface now provides a versatile system to induce and manipulate magnetic moments in otherwise nonmagnetic materials.Comment: Nature Materials, July issu

    The effect of walking speed on quality of gait in older adults

    Get PDF
    Background: Gait quality characteristics can contribute to the identification of individuals at risk of falls. Since older adults with high fall risk tend to walk slower than older adults with a lower fall risk, walking speed may underlie differences in gait quality characteristics. Research question: How does walking speed affect gait quality characteristics in older people? Methods: We investigated the effect of walking speed on gait characteristics in 11 older adults (aged 69.6 ± 4.1 years). Trunk accelerations (Dynaport MoveMonitor) were recorded during 5 min of treadmill walking at four different speeds. From these trunk accelerations we calculated step frequency, root mean square, harmonic ratio, index of harmonicity, sample entropy and logarithmic divergence rate per stride. Results: Our results showed that all gait characteristics were affected by walking speed, except for sample entropy in antero-posterior (AP) direction. An increase in walking speed resulted in a higher step frequency, higher standard deviation, more symmetric gait, more smooth vertical (VT) accelerations, less smooth accelerations in medio-lateral (ML) and AP directions, less regular dynamics in ML direction, more regular dynamics in VT direction, and a more stable gait pattern overall. Significance: These findings suggest that, within a range of 0.5–1.4 m/s, a lower walking speed results in a lower gait quality, which may underlie differences in gait quality between older fallers and non-fallers

    Learning Sampling and Model-Based Signal Recovery for Compressed Sensing MRI

    Get PDF
    Compressed sensing (CS) MRI relies on adequate undersampling of the k-space to accelerate the acquisition without compromising image quality. Consequently, the design of optimal sampling patterns for these k-space coefficients has received significant attention, with many CS MRI methods exploiting variable-density probability distributions. Realizing that an optimal sampling pattern may depend on the downstream task (e.g. image reconstruction, segmentation, or classification), we here propose joint learning of both task-adaptive k-space sampling and a subsequent model-based proximal-gradient recovery network. The former is enabled through a probabilistic generative model that leverages the Gumbel-softmax relaxation to sample across trainable beliefs while maintaining differentiability. The proposed combination of a highly flexible sampling model and a model-based (sampling-adaptive) image reconstruction network facilitates exploration and efficient training, yielding improved MR image quality compared to other sampling baselines

    Suppression of Octahedral Tilts and Associated Changes of Electronic Properties at Epitaxial Oxide Heterostructure Interfaces

    Get PDF
    Epitaxial oxide interfaces with broken translational symmetry have emerged as a central paradigm behind the novel behaviors of oxide superlattices. Here, we use scanning transmission electron microscopy to demonstrate a direct, quantitative unit-cell-by-unit-cell mapping of lattice parameters and oxygen octahedral rotations across the BiFeO3-La0.7Sr0.3MnO3 interface to elucidate how the change of crystal symmetry is accommodated. Combined with low-loss electron energy loss spectroscopy imaging, we demonstrate a mesoscopic antiferrodistortive phase transition and elucidate associated changes in electronic properties in a thin layer directly adjacent to the interface
    corecore