84 research outputs found

    Pleural inflammatory myofibroblastoma: a locally aggressive intra-thoracic tumour

    Get PDF
    A 41-year old non-smoking woman presented with persistent pleural effusion. Pleural fluid was hemorrhagic and fluid cytology was negative for malignant cells. A working diagnosis of chronic haemothorax was made and standard right thoracotomy was performed to identify the source of bleeding. A 10 × 10 cms poorly circumscribed mass containing blood clots, altered blood, fibrous tissue, and gelatinous debris was found and demonstrated features of inflammatory myofibroblastoma on immunohistochemistry. Thirteen months later, the patient developed a local recurrence, which was treated surgically. Semi-solid physical appearance of this tumour has not been reported previously. This case report further adds to the diagnostic dilemma related with this tumour

    Microbial Communities Under Distinct Thermal and Geochemical Regimes in Axial and Off-Axis Sediments of Guaymas Basin

    Get PDF
    Cold seeps and hydrothermal vents are seafloor habitats fueled by subsurface energy sources. Both habitat types coexist in Guaymas Basin in the Gulf of California, providing an opportunity to compare microbial communities with distinct physiologies adapted to different thermal regimes. Hydrothermally active sites in the southern Guaymas Basin axial valley, and cold seep sites at Octopus Mound, a carbonate mound with abundant methanotrophic cold seep fauna at the Central Seep location on the northern off-axis flanking regions, show consistent geochemical and microbial differences between hot, temperate, cold seep, and background sites. The changing microbial actors include autotrophic and heterotrophic bacterial and archaeal lineages that catalyze sulfur, nitrogen, and methane cycling, organic matter degradation, and hydrocarbon oxidation. Thermal, biogeochemical, and microbiological characteristics of the sampling locations indicate that sediment thermal regime and seep-derived or hydrothermal energy sources structure the microbial communities at the sediment surface

    Microbial communities under distinct thermal and geochemical regimes in axial and off-axis sediments of Guaymas Basin

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Teske, A., Wegener, G., Chanton, J. P., White, D., MacGregor, B., Hoer, D., de Beer, D., Zhuang, G., Saxton, M. A., Joye, S. B., Lizarralde, D., Soule, S. A., & Ruff, S. E. Microbial communities under distinct thermal and geochemical regimes in axial and off-axis sediments of Guaymas Basin. Frontiers in Microbiology, 12, (2021): 633649, https://doi.org/10.3389/fmicb.2021.633649.Cold seeps and hydrothermal vents are seafloor habitats fueled by subsurface energy sources. Both habitat types coexist in Guaymas Basin in the Gulf of California, providing an opportunity to compare microbial communities with distinct physiologies adapted to different thermal regimes. Hydrothermally active sites in the southern Guaymas Basin axial valley, and cold seep sites at Octopus Mound, a carbonate mound with abundant methanotrophic cold seep fauna at the Central Seep location on the northern off-axis flanking regions, show consistent geochemical and microbial differences between hot, temperate, cold seep, and background sites. The changing microbial actors include autotrophic and heterotrophic bacterial and archaeal lineages that catalyze sulfur, nitrogen, and methane cycling, organic matter degradation, and hydrocarbon oxidation. Thermal, biogeochemical, and microbiological characteristics of the sampling locations indicate that sediment thermal regime and seep-derived or hydrothermal energy sources structure the microbial communities at the sediment surface.Research on Guaymas Basin in the Teske lab is supported by NSF Molecular and cellular Biology grant 1817381 “Collaborative Research: Next generation physiology: a systems-level understanding of microbes driving carbon cycling in marine sediments”. Sampling in Guaymas Basin was supported by collaborative NSF Biological Oceanography grants 1357238 and 1357360 “Collaborative Research: Microbial carbon cycling and its interaction with sulfur and nitrogen transformations in Guaymas Basin hydrothermal sediments” to AT and SJ, respectively. SER was supported by an AITF/Eyes High Postdoctoral Fellowship and start-up funds provided by the Marine Biological Laboratory

    Optimizing Clinical Benefits of Bisphosphonates in Cancer Patients with Bone Metastases

    Get PDF
    Malignant bone disease is common in patients with advanced solid tumors or multiple myeloma. Bisphosphonates have been found to be important treatments for bone metastases. A positive benefit-risk ratio for bisphosphonates has been established, and ongoing clinical trials will determine whether individualized therapy is possible

    Carbonate-hosted microbial communities are prolific and pervasive methane oxidizers at geologically diverse marine methane seep sites

    Get PDF
    At marine methane seeps, vast quantities of methane move through the shallow subseafloor, where it is largely consumed by microbial communities. This process plays an important role in global methane dynamics, but we have yet to identify all of the methane sinks in the deep sea. Here, we conducted a continental-scale survey of seven geologically diverse seafloor seeps and found that carbonate rocks from all sites host methane-oxidizing microbial communities with substantial methanotrophic potential. In laboratory-based mesocosm incubations, chimney-like carbonates from the newly described Point Dume seep off the coast of Southern California exhibited the highest rates of anaerobic methane oxidation measured to date. After a thorough analysis of physicochemical, electrical, and biological factors, we attribute this substantial metabolic activity largely to higher cell density, mineral composition, kinetic parameters including an elevated Vmax, and the presence of specific microbial lineages. Our data also suggest that other features, such as electrical conductance, rock particle size, and microbial community alpha diversity, may influence a sample's methanotrophic potential, but these factors did not demonstrate clear patterns with respect to methane oxidation rates. Based on the apparent pervasiveness within seep carbonates of microbial communities capable of performing anaerobic oxidation of methane, as well as the frequent occurrence of carbonates at seeps, we suggest that rock-hosted methanotrophy may be an important contributor to marine methane consumption.https://www.pnas.org/content/118/25/e200685711

    Comparison between two methods of working length determination and its effect on radiographic extent of root canal filling: a clinical study [ISRCTN71486641]

    Get PDF
    BACKGROUND: Obtaining a correct working length is critical to the success of endodontic therapy. Different methods have been used to identify this crucial measurement. The Aim of this clinical study was to compare the effect of working length determination using apex locator alone or in combination with working length radiograph on the apical extent of root canal filling. METHODS: A total number of 66 patients, 151 canals were randomized into two groups, In group (I) working length was determined by apex locator alone, while in group (II) working length was determined by apex locator confirmed by working length radiograph, length of obturation was assessed, and the total number of radiographs was recorded. The data were analyzed using SAS system and T. tests were carried out. Statistical significance was considered to be P ≤ 0.05. RESULTS: Sixty seven canals in group I were treated with a mean distance from the tip of root canal filling to radiographic apex -0.5 mm ± 0.5 and a mean of a total number of radiographs of 2.0, while in group II eighty four canals were treated with a mean distance from the tip of root canal filling to radiographic apex -0.4 mm ± 0.5 and a mean of a total number of radiographs of 3.2. There was no statistically significant difference in the mean distance from the tip of root filling to radiographic apex between group I and group II (P > 0.05). CONCLUSION: The practice of using electronic apex locator in the determination of working length is useful and reliable with no statistical difference of the radiographic extent of root canal filling when using apex locator alone or in combination with working length radiograph. Under the clinical conditions of this study, it is suggested that the correct use of an apex locator alone could prevent the need for further diagnostic radiographs for determination of working length. This method can be useful in patients who need not to be exposed to repeated radiation because of mental, medical or oral conditions

    Hernia fibroblasts lack β-estradiol induced alterations of collagen gene expression

    Get PDF
    BACKGROUND: Estrogens are reported to increase type I and type III collagen deposition and to regulate Metalloproteinase 2 (MMP-2) expression. These proteins are reported to be dysregulated in incisional hernia formation resulting in a significantly decreased type I to III ratio. We aimed to evaluate the β-estradiol mediated regulation of type I and type III collagen genes as well as MMP-2 gene expression in fibroblasts derived from patients with or without history of recurrent incisional hernia disease. We compared primary fibroblast cultures from male/female subjects without/without incisional hernia disease. RESULTS: Incisional hernia fibroblasts (IHFs) revealed a decreased type I/III collagen mRNA ratio. Whereas fibroblasts from healthy female donors responded to β-estradiol, type I and type III gene transcription is not affected in fibroblasts from males or affected females. Furthermore β-estradiol had no influence on the impaired type I to III collagen ratio in fibroblasts from recurrent hernia patients. CONCLUSION: Our results suggest that β-estradiol does not restore the imbaired balance of type I/III collagen in incisional hernia fibroblasts. Furthermore, the individual was identified as an independent factor for the β-estradiol induced alterations of collagen gene expression. The observation of gender specific β-estradiol-dependent changes of collagen gene expression in vitro is of significance for future studies of cellular response

    Membrane-Associated RING-CH Proteins Associate with Bap31 and Target CD81 and CD44 to Lysosomes

    Get PDF
    Membrane-associated RING-CH (MARCH) proteins represent a family of transmembrane ubiquitin ligases modulating intracellular trafficking and turnover of transmembrane protein targets. While homologous proteins encoded by gamma-2 herpesviruses and leporipoxviruses have been studied extensively, limited information is available regarding the physiological targets of cellular MARCH proteins. To identify host cell proteins targeted by the human MARCH-VIII ubiquitin ligase we used stable isotope labeling of amino-acids in cell culture (SILAC) to monitor MARCH-dependent changes in the membrane proteomes of human fibroblasts. Unexpectedly, we observed that MARCH-VIII reduced the surface expression of Bap31, a chaperone that predominantly resides in the endoplasmic reticulum (ER). We demonstrate that Bap31 associates with the transmembrane domains of several MARCH proteins and controls intracellular transport of MARCH proteins. In addition, we observed that MARCH-VIII reduced the surface expression of the hyaluronic acid-receptor CD44 and both MARCH-VIII and MARCH-IV sequestered the tetraspanin CD81 in endo-lysosomal vesicles. Moreover, gene knockdown of MARCH-IV increased surface levels of endogenous CD81 suggesting a constitutive involvement of this family of ubiquitin ligases in the turnover of tetraspanins. Our data thus suggest a role of MARCH-VIII and MARCH-IV in the regulated turnover of CD81 and CD44, two ubiquitously expressed, multifunctional proteins

    Hughes Abdominal Repair Trial (HART) – Abdominal wall closure techniques to reduce the incidence of incisional hernias: study protocol for a randomised controlled trial

    Get PDF
    Background Incisional hernias are common complications of midline closure following abdominal surgery and cause significant morbidity, impaired quality of life and increased health care costs. The ‘Hughes Repair’ combines a standard mass closure with a series of horizontal and two vertical mattress sutures within a single suture. This theoretically distributes the load along the incision length as well as across it. There is evidence to suggest that this technique is as effective as mesh repair for the operative management of incisional hernias; however, no trials have compared the Hughes Repair with standard mass closure for the prevention of incisional hernia formation following a midline incision. Methods/design This is a 1:1 randomised controlled trial comparing two suture techniques for the closure of the midline abdominal wound following surgery for colorectal cancer. Full ethical approval has been gained (Wales REC 3, MREC 12/WA/0374). Eight hundred patients will be randomised from approximately 20 general surgical units within the United Kingdom. Patients undergoing open or laparoscopic (more than a 5-cm midline incision) surgery for colorectal cancer, elective or emergency, are eligible. Patients under the age of 18 years, those having mesh inserted or undergoing musculofascial flap closure of the perineal defect in abdominoperineal wound closure, and those unable to give informed consent will be excluded. Patients will be randomised intraoperatively to either the Hughes Repair or standard mass closure. The primary outcome measure is the incidence of incisional hernias at 1 year as assessed by standardised clinical examination. The secondary outcomes include quality of life patient-reported outcome measures, cost-utility analysis, incidence of complete abdominal wound dehiscence and C-POSSUM scores. The incidence of incisional hernia at 1 year, assessed by computerised tomography, will form a tertiary outcome. Discussion A feasibility phase has been completed. The results of the study will be used to inform current and future practice and potentially reduce the risk of incisional hernia formation following midline incisions
    corecore