1,601 research outputs found
Continuous Self-Similarity and -Duality
We study the spherically symmetric collapse of the axion/dilaton system
coupled to gravity. We show numerically that the critical solution at the
threshold of black hole formation is continuously self-similar. Numerical and
analytical arguments both demonstrate that the mass scaling away from
criticality has a critical exponent of .Comment: 17 pages, harvmac, six figures uuencoded in separate fil
Critical Collapse of the Massless Scalar Field in Axisymmetry
We present results from a numerical study of critical gravitational collapse
of axisymmetric distributions of massless scalar field energy. We find
threshold behavior that can be described by the spherically symmetric critical
solution with axisymmetric perturbations. However, we see indications of a
growing, non-spherical mode about the spherically symmetric critical solution.
The effect of this instability is that the small asymmetry present in what
would otherwise be a spherically symmetric self-similar solution grows. This
growth continues until a bifurcation occurs and two distinct regions form on
the axis, each resembling the spherically symmetric self-similar solution. The
existence of a non-spherical unstable mode is in conflict with previous
perturbative results, and we therefore discuss whether such a mode exists in
the continuum limit, or whether we are instead seeing a marginally stable mode
that is rendered unstable by numerical approximation.Comment: 11 pages, 8 figure
The Role of Black Hole Feedback on Size and Structural Evolution in Massive Galaxies
We use cosmological hydrodynamical simulations to investigate the role of
feedback from accreting black holes on the evolution of sizes, compactness,
stellar core density and specific star-formation of massive galaxies with
stellar masses of . We perform two sets of
cosmological zoom-in simulations of 30 halos to z=0: (1) without black holes
and Active Galactic Nucleus (AGN) feedback and (2) with AGN feedback arising
from winds and X-ray radiation. We find that AGN feedback can alter the stellar
density distribution, reduce the core density within the central 1 kpc by 0.3
dex from z=1, and enhance the size growth of massive galaxies. We also find
that galaxies simulated with AGN feedback evolve along similar tracks to those
characterized by observations in specific star formation versus compactness. We
confirm that AGN feedback plays an important role in transforming galaxies from
blue compact galaxies into red extended galaxies in two ways: (1) it
effectively quenches the star formation, transforming blue compact galaxies
into compact quiescent galaxies and (2) it also removes and prevents new
accretion of cold gas, shutting down in-situ star formation and causing
subsequent mergers to be gas-poor or mixed. Gas poor minor mergers then build
up an extended stellar envelope. AGN feedback also puffs up the central region
through the fast AGN driven winds as well as the slow expulsion of gas while
the black hole is quiescent. Without AGN feedback, large amounts of gas
accumulate in the central region, triggering star formation and leading to
overly massive blue galaxies with dense stellar cores.Comment: 13 pages, 7 figures, Accepted for publication in Ap
Criticality and Bifurcation in the Gravitational Collapse of a Self-Coupled Scalar Field
We examine the gravitational collapse of a non-linear sigma model in
spherical symmetry. There exists a family of continuously self-similar
solutions parameterized by the coupling constant of the theory. These solutions
are calculated together with the critical exponents for black hole formation of
these collapse models. We also find that the sequence of solutions exhibits a
Hopf-type bifurcation as the continuously self-similar solutions become
unstable to perturbations away from self-similarity.Comment: 18 pages; one figure, uuencoded postscript; figure is also available
at http://www.physics.ucsb.edu/people/eric_hirschman
On the dependence of galaxy morphologies on galaxy mergers
The distribution of galaxy morphological types is a key test for models of
galaxy formation and evolution, providing strong constraints on the relative
contribution of different physical processes responsible for the growth of the
spheroidal components. In this paper, we make use of a suite of semi-analytic
models to study the efficiency of galaxy mergers in disrupting galaxy discs and
building galaxy bulges. In particular, we compare standard prescriptions
usually adopted in semi-analytic models, with new prescriptions proposed by
Kannan et al., based on results from high-resolution hydrodynamical
simulations, and we show that these new implementations reduce the efficiency
of bulge formation through mergers. In addition, we compare our model results
with a variety of observational measurements of the fraction of
spheroid-dominated galaxies as a function of stellar and halo mass, showing
that the present uncertainties in the data represent an important limitation to
our understanding of spheroid formation. Our results indicate that the main
tension between theoretical models and observations does not stem from the
survival of purely disc structures (i.e. bulgeless galaxies), rather from the
distribution of galaxies of different morphological types, as a function of
their stellar mass.Comment: MNRAS in press, 11 pages, 5 figure
Rotating magnetic solution in three dimensional Einstein gravity
We obtain the magnetic counterpart of the BTZ solution, i.e., the rotating
spacetime of a point source generating a magnetic field in three dimensional
Einstein gravity with a negative cosmological constant. The static
(non-rotating) magnetic solution was found by Clement, by Hirschmann and Welch
and by Cataldo and Salgado. This paper is an extension of their work in order
to include (i) angular momentum, (ii) the definition of conserved quantities
(this is possible since spacetime is asymptotically anti-de Sitter), (iii)
upper bounds for the conserved quantities themselves, and (iv) a new
interpretation for the magnetic field source. We show that both the static and
rotating magnetic solutions have negative mass and that there is an upper bound
for the intensity of the magnetic field source and for the value of the angular
momentum. The magnetic field source can be interpreted not as a vortex but as
being composed by a system of two symmetric and superposed electric charges,
one of the electric charges is at rest and the other is spinning. The rotating
magnetic solution reduces to the rotating uncharged BTZ solution when the
magnetic field source vanishes.Comment: Latex (uses JHEP3.cls), 12 pages. Published versio
Boosting jet power in black hole spacetimes
The extraction of rotational energy from a spinning black hole via the
Blandford-Znajek mechanism has long been understood as an important component
in models to explain energetic jets from compact astrophysical sources. Here we
show more generally that the kinetic energy of the black hole, both rotational
and translational, can be tapped, thereby producing even more luminous jets
powered by the interaction of the black hole with its surrounding plasma. We
study the resulting Poynting jet that arises from single boosted black holes
and binary black hole systems. In the latter case, we find that increasing the
orbital angular momenta of the system and/or the spins of the individual black
holes results in an enhanced Poynting flux.Comment: 7 pages, 5 figure
Prevalence of abnormal findings in 230 knees of asymptomatic adults using 3.0Â T MRI.
OBJECTIVE: To identify abnormalities in asymptomatic sedentary individuals using 3.0 Tesla high-resolution MRI. MATERIALS AND METHODS: The cohort comprised of 230 knees of 115 uninjured sedentary adults (51 males, 64 females; median age: 44Â years). All participants had bilateral knee 3.0Â T MRIs. Two senior musculoskeletal radiologists graded all intraarticular knee structures using validated scoring systems. Participants completed Knee Injury and Osteoarthritis Outcome Score questionnaires at the time of the MRI scan. RESULTS: MRI showed abnormalities in the majority (97%) of knees. Thirty percent knees had meniscal tears: horizontal (23%), complex (3%), vertical (2%), radial (2%) and bucket handle (1%). Cartilage and bone marrow abnormalities were prevalent at the patellofemoral joint (57% knees and 48% knees, respectively). Moderate and severe cartilage lesions were common, in 19% and 31% knees, respectively, while moderate and severe bone marrow oedema in 19% and 31% knees, respectively. Moderate-intensity lesion in tendons was found in 21% knees and high-grade tendonitis in 6% knees-the patellar (11% and 2%, respectively) and quadriceps (7% and 2%, respectively) tendons being most affected. Three percent partial ligamentous ruptures were found, especially of the anterior cruciate ligament (2%). CONCLUSION: Nearly all knees of asymptomatic adults showed abnormalities in at least one knee structure on MRI. Meniscal tears, cartilage and bone marrow lesions of the patellofemoral joint were the most common pathological findings. Bucket handle and complex meniscal tears were reported for the first time in asymptomatic knees
Is the immediate effect of marathon running on novice runners' knee joints sustained within 6Â months after the run? A follow-up 3.0Â T MRI study.
OBJECTIVE: To evaluate changes in the knee joints of asymptomatic first-time marathon runners, using 3.0Â T MRI, 6Â months after finishing marathon training and run. MATERIALS AND METHODS: Six months after their participation in a baseline study regarding their knee joints, 44 asymptomatic novice marathoners (17 males, 27 females, mean age 46Â years old) agreed to participate in a repeat MRI investigation: 37 completed both a standardized 4-month-long training programme and the marathon (marathon runners); and 7 dropped out during training (pre-race dropouts). The participants already underwent bilateral 3.0Â T MRIs: 6Â months before and 2Â weeks after their first marathon, the London Marathon 2017. This study was a follow-up assessment of their knee joints. Each knee structure was assessed using validated scoring/grading systems at all time points. RESULTS: Two weeks after the marathon, 3 pre-marathon bone marrow lesions and 2 cartilage lesions showed decrease in radiological score on MRI, and the improvement was sustained at the 6-month follow-up. New improvements were observed on MRI at follow-up: 5 pre-existing bone marrow lesions and 3 cartilage lesions that remained unchanged immediately after the marathon reduced in their extent 6Â months later. No further lesions appeared at follow-up, and the 2-week post-marathon lesions showed signs of reversibility: 10 of 18 bone marrow oedema-like signals and 3 of 21 cartilage lesions decreased on MRI. CONCLUSION: The knees of novice runners achieved sustained improvement, for at least 6Â months post-marathon, in the condition of their bone marrow and articular cartilage
Standardized volumetric 3D-analysis of SPECT/CT imaging in orthopaedics: overcoming the limitations of qualitative 2D analysis
<p>Abstract</p> <p>Background</p> <p>SPECT/CT combines high resolution anatomical 3D computerized tomography (CT) and single photon emission computerized tomography (SPECT) as functional imaging, which provides 3D information about biological processes into a single imaging modality. The clinical utility of SPECT/CT imaging has been recognized in a variety of medical fields and most recently in orthopaedics; however, clinical adoption has been limited due to shortcomings of analytical tools available. Specifically, SPECT analyses are mainly qualitative due to variation in overall metabolic uptake among patients. Furthermore, most analyses are done in 2D, although rich 3D data are available. Consequently, it is difficult to quantitatively compare the position, size, and intensity of SPECT uptake regions among patients, and therefore difficult to draw meaningful clinical conclusions.</p> <p>Methods</p> <p>We propose a method for normalizing orthopaedic SPECT/CT data that enables standardised 3D volumetric quantitative measurements and comparison among patients. Our method is based on 3D localisation using clinically relevant anatomical landmarks and frames of reference, along with intensity value normalisation using clinically relevant reference regions. Using the normalised data, we describe a thresholding technique to distinguish clinically relevant hot spots from background activity.</p> <p>Results</p> <p>Using an exemplar comparison of two patients, we demonstrate how the normalised, 3D-rendered data can provide a richer source of clinical information and allow quantitative comparison of SPECT/CT measurements across patients. Specifically, we demonstrate how non-normalized SPECT/CT analysis can lead to different clinical conclusions than the normalized SPECT/CT analysis, and that normalized quantitative analysis can be a more accurate indicator of pathology.</p> <p>Conclusions</p> <p>Conventional orthopaedic frames of reference, 3D volumetric data analysis and thresholding are used to distinguish clinically relevant hot spots from background activity. Our goal is to facilitate a standardised approach to quantitative data collection and comparison of clinical studies using SPECT/CT, enabling more widespread clinical use of this powerful imaging tool.</p
- âŠ