127 research outputs found

    Search for Cross-Correlations of Ultra--High-Energy Cosmic Rays with BL Lacertae Objects

    Full text link
    We present the results of searches for correlation between ultra--high-energy cosmic rays observed in stereo mode by the High Resolution Fly's Eye (HiRes) experiment and objects of the BL Lac subclass of active galaxies. In particular, we discuss an excess of events correlating with confirmed BL Lacs in the Veron 10th Catalog. As described in detail in Abbasi et al. (2005), the significance level of these correlations cannot be reliably estimated due to the a posteriori nature of the search, and the results must be tested independently before any claim can be made. We identify the precise hypotheses that will be tested with independent data.Comment: 4 pages. To be presented at the 2005 ICRC in Pune, India, in Augus

    Bounds on the cosmogenic neutrino flux

    Full text link
    Under the assumption that some part of the observed highest energy cosmic rays consists of protons originating from cosmological distances, we derive bounds on the associated flux of neutrinos generated by inelastic processes with the cosmic microwave background photons. We exploit two methods. First, a power-like injection spectrum is assumed. Then, a model-independent technique, based on the inversion of the observed proton flux, is presented. The inferred lower bound is quite robust. As expected, the upper bound depends on the unknown composition of the highest energy cosmic rays. Our results represent benchmarks for all ultrahigh energy neutrino telescopes.Comment: 12 pages, 6 figure

    Disappointing model for ultrahigh-energy cosmic rays

    Full text link
    Data of Pierre Auger Observatory show a proton-dominated chemical composition of ultrahigh-energy cosmic rays spectrum at (1 - 3) EeV and a steadily heavier composition with energy increasing. In order to explain this feature we assume that (1 - 3) EeV protons are extragalactic and derive their maximum acceleration energy, E_p^{max} \simeq 4 EeV, compatible with both the spectrum and the composition. We also assume the rigidity-dependent acceleration mechanism of heavier nuclei, E_A^{max} = Z x E_p^{max}. The proposed model has rather disappointing consequences: i) no pion photo-production on CMB photons in extragalactic space and hence ii) no high-energy cosmogenic neutrino fluxes; iii) no GZK-cutoff in the spectrum; iv) no correlation with nearby sources due to nuclei deflection in the galactic magnetic fields up to highest energies.Comment: 4 pages, 7 figures, the talk presented by A. Gazizov at NPA5 Conference, April 3-8, 2011, Eilat, Israe

    Composition of UHECR and the Pierre Auger Observatory Spectrum

    Full text link
    We fit the recently published Pierre Auger ultra-high energy cosmic ray spectrum assuming that either nucleons or nuclei are emitted at the sources. We consider the simplified cases of pure proton, or pure oxygen, or pure iron injection. We perform an exhaustive scan in the source evolution factor, the spectral index, the maximum energy of the source spectrum Z E_{max}, and the minimum distance to the sources. We show that the Pierre Auger spectrum agrees with any of the source compositions we assumed. For iron, in particular, there are two distinct solutions with high and low E_{max} (e.g. 6.4 10^{20} eV and 2 10^{19} eV) respectively which could be distinguished by either a large fraction or the near absence of proton primaries at the highest energies. We raise the possibility that an iron dominated injected flux may be in line with the latest composition measurement from the Pierre Auger Observatory where a hint of heavy element dominance is seen.Comment: 19 pages, 6 figures (33 panels)- Uses iopart.cls and iopart12.clo- In version 2: addition of a few sentences and two reference

    GZK Photons Above 10 EeV

    Full text link
    We calculate the flux of "GZK-photons", namely the flux of photons produced by extragalactic nucleons through the resonant photoproduction of pions, the so called GZK effect. This flux depends on the UHECR spectrum on Earth, of the spectrum of nucleons emitted at the sources, which we characterize by its slope and maximum energy, on the distribution of sources and on the intervening cosmological backgrounds, in particular the magnetic field and radio backgrounds. For the first time we calculate the GZK photons produced by nuclei. We calculate the possible range of the GZK photon fraction of the total UHECR flux for the AGASA and the HiRes spectra. We find that for nucleons produced at the sources it could be as large as a few % and as low as 10^{-4} above 10 EeV. For nuclei produced at the sources the maximum photon fraction is a factor of 2 to 3 times smaller above 10 EeV but the minimum could be much smaller than for nucleons. We also comment on cosmogenic neutrino fluxes.Comment: 20 pages, 9 figures (21 panels), iopart.cls and iopart12.clo needed to typese

    Ultrahigh Energy Nuclei in the Galactic Magnetic Field

    Full text link
    Observations are consistent with a significant fraction of heavy nuclei in the cosmic ray flux above a few times 10^19 eV. Such nuclei can be deflected considerably in the Galactic magnetic field, with important implications for the search of their sources. We perform detailed simulations of heavy nuclei propagation within recent Galactic magnetic field models. While such models are not yet sufficiently constrained to predict deflection maps in detail, we find general features of the distribution of (de-) magnified flux from sources. Since in most theoretical models sources of heavy nuclei are located in the local large scale structure of galaxies, we show examples of images of several nearby galaxy clusters and of the supergalactic plane. Such general features may be useful to develop efficient methods for source reconstruction from observed ultrahigh energy cosmic ray arrival directions.Comment: 17 pages, 11 figures. Published in JCA

    Super-GZK Photons from Photon-Axion Mixing

    Full text link
    We show that photons with energies above the GZK cutoff can reach us from very distant sources if they mix with light axions in extragalactic magnetic fields. The effect which enables this is the conversion of photons into axions, which are sufficiently weakly coupled to travel large distances unimpeded. These axions then convert back into high energy photons close to the Earth. We show that photon-axion mixing facilitates the survival of super-GZK photons most efficiently with a photon-axion coupling scale of order 10^11 GeV, which is in the same range as the scale for the photon-axion mixing explanation for the dimming of supernovae without cosmic acceleration. We discuss possible observational consequences of this effect.Comment: 17 pages, 5 figures. Published versio

    Ultra-High Energy Cosmic Ray production in the polar cap regions of black hole magnetospheres

    Full text link
    We develop a model of ultra-high energy cosmic ray (UHECR) production via acceleration in a rotation-induced electric field in vacuum gaps in the magnetospheres of supermassive black holes (BH). We show that if the poloidal magnetic field near the BH horizon is misaligned with the BH rotation axis, charged particles, which initially spiral into the BH hole along the equatorial plane, penetrate into the regions above the BH "polar caps" and are ejected with high energies to infinity. We show that in such a model acceleration of protons near a BH of typical mass 3e8 solar masses is possible only if the magnetic field is almost aligned with the BH rotation axis. We find that the power of anisotropic electromagnetic emission from an UHECR source near a supermassive BH should be at least 10-100 times larger then UHECR power of the source. This implies that if the number of UHECR sources within the 100 Mpc sphere is ~100, the power of electromagnetic emission which accompanies proton acceleration in each source, 10424310^{42-43} erg/s, is comparable to the typical luminosities of active galactic nuclei (AGN) in the local Universe. We also explore the acceleration of heavy nuclei, for which the constraints on the electromagnetic luminosity and on the alignment of magnetic field in the gap are relaxed

    Strong interactions in air showers

    Full text link
    We study the role new gauge interactions in extensions of the standard model play in air showers initiated by ultrahigh-energy cosmic rays. Hadron-hadron events remain dominated by quantum chromodynamics, while projectiles and/or targets from beyond the standard model permit us to see qualitative differences arising due to the new interactions.Comment: 35 pages, 12 figures. Accepted for publication in JCA
    corecore