27 research outputs found

    The protein histidine phosphatase LHPP is a tumour suppressor

    Get PDF
    Histidine phosphorylation, the so-called hidden phosphoproteome, is a poorly characterized post-translational modification of proteins. Here we describe a role of histidine phosphorylation in tumorigenesis. Proteomic analysis of 12 tumours from an mTOR-driven hepatocellular carcinoma mouse model revealed that NME1 and NME2, the only known mammalian histidine kinases, were upregulated. Conversely, expression of the putative histidine phosphatase LHPP was downregulated specifically in the tumours. We demonstrate that LHPP is indeed a protein histidine phosphatase. Consistent with these observations, global histidine phosphorylation was significantly upregulated in the liver tumours. Sustained, hepatic expression of LHPP in the hepatocellular carcinoma mouse model reduced tumour burden and prevented the loss of liver function. Finally, in patients with hepatocellular carcinoma, low expression of LHPP correlated with increased tumour severity and reduced overall survival. Thus, LHPP is a protein histidine phosphatase and tumour suppressor, suggesting that deregulated histidine phosphorylation is oncogenic

    Success Factors for Information Systems Professionals

    No full text
    278-284In an environment of a rapidly changing market for ISPs, the need to understand the factors that contribute to the success of ISPs becomes critical. Work reported attempts to identify these factors. The initial research involved structu red interviews with IS and human resource managers, and successful ISPs from four organizations in the US. The results may have implications for education, selection, training, and organizational development of ISPs. Substantial follow-up research is needed to fully understand what makes ISPs succeed

    Microsomal cytochrome P450 in human brain regions

    No full text
    Cytochrome P450 (P450) levels were quantitated in microsomes from human brain regions obtained at autopsy. The reduced carbon monoxide binding spectra of cortical microsomes showed two absorption maxima at 449 and 425 nm. On solubilization of the microsomes, essentially a single peak was observed at 449 nm. The P450 levels in human brain cortical microsomes varied from 0.03 to 0.12 nmol/mg protein among the seven samples examined. The concentration of the hemeprotein present as nmol/g tissue was highest in the brain stem and cerebellum and lowest in the striatum and hippocampus

    Altered muscle niche contributes to myogenic deficit in the D2-mdx model of severe DMD

    No full text
    Abstract Lack of dystrophin expression is the underlying genetic basis for Duchenne muscular dystrophy (DMD). However, disease severity varies between patients, based on specific genetic modifiers. D2-mdx is a model for severe DMD that exhibits exacerbated muscle degeneration and failure to regenerate even in the juvenile stage of the disease. We show that poor regeneration of juvenile D2-mdx muscles is associated with an enhanced inflammatory response to muscle damage that fails to resolve efficiently and supports the excessive accumulation of fibroadipogenic progenitors (FAPs), leading to increased fibrosis. Unexpectedly, the extent of damage and degeneration in juvenile D2-mdx muscle is significantly reduced in adults, and is associated with the restoration of the inflammatory and FAP responses to muscle injury. These improvements enhance regenerative myogenesis in the adult D2-mdx muscle, reaching levels comparable to the milder B10-mdx model of DMD. Ex vivo co-culture of healthy satellite cells (SCs) with juvenile D2-mdx FAPs reduces their fusion efficacy. Wild-type juvenile D2 mice also manifest regenerative myogenic deficit and glucocorticoid treatment improves their muscle regeneration. Our findings indicate that aberrant stromal cell responses contribute to poor regenerative myogenesis and greater muscle degeneration in juvenile D2-mdx muscles and reversal of this reduces pathology in adult D2-mdx muscle, identifying these responses as a potential therapeutic target for the treatment of DMD

    Multi-omics data integration reveals novel drug targets in hepatocellular carcinoma

    Get PDF
    Background Genetic aberrations in hepatocellular carcinoma (HCC) are well known, but the functional consequences of such aberrations remain poorly understood. Results Here, we explored the effect of defined genetic changes on the transcriptome, proteome and phosphoproteome in twelve tumors from an mTOR-driven hepatocellular carcinoma mouse model. Using Network-based Integration of multi-omiCS data (NetICS), we detected 74 ‘mediators’ that relay via molecular interactions the effects of genetic and miRNA expression changes. The detected mediators account for the effects of oncogenic mTOR signaling on the transcriptome, proteome and phosphoproteome. We confirmed the dysregulation of the mediators YAP1, GRB2, SIRT1, HDAC4 and LIS1 in human HCC. Conclusions This study suggests that targeting pathways such as YAP1 or GRB2 signaling and pathways regulating global histone acetylation could be beneficial in treating HCC with hyperactive mTOR signaling
    corecore