32 research outputs found

    The Higgs as a Portal to Plasmon-like Unparticle Excitations

    Get PDF
    12 LaTeX pages, 2 figures.-- Published in: JHEP04(2008)028.-- Final full-text version available at: http://dx.doi.org/10.1088/1126-6708/2008/04/028.A renormalizable coupling between the Higgs and a scalar unparticle operator O_U of non-integer dimension d_U<2 triggers, after electroweak symmetry breaking, an infrared divergent vacuum expectation value for O_U. Such IR divergence should be tamed before any phenomenological implications of the Higgs-unparticle interplay can be drawn. In this paper we present a novel mechanism to cure that IR divergence through (scale-invariant) unparticle self-interactions, which has properties qualitatively different from the mechanism considered previously. Besides finding a mass gap in the unparticle continuum we also find an unparticle pole reminiscent of a plasmon resonance. Such unparticle features could be explored experimentally through their mixing with the Higgs boson.Work supported in part by the European Commission under the European Union through the Marie Curie Research and Training Networks “Quest for Unification” (MRTN-CT- 2004-503369) and “UniverseNet” (MRTN-CT-2006-035863); by the Spanish Consolider- Ingenio 2010 Programme CPAN (CSD2007-0042); by a Comunidad de Madrid project (P-ESP-00346) and by CICYT, Spain, under contracts FPA 2007-60252 and FPA 2005-02211

    Trophic State in Canterbury Waterways

    Get PDF
    Aquatic eutrophication is a serious global problem, associated with phytoplankton blooms, hypoxia, and loss of species. The objective of this thesis was to advance understanding of stream and lake eutrophication within Canterbury (South Island, New Zealand). I investigated three key questions: 1) How do riparian characteristics control stream trophic state, 2) how does stream trophic state in the Canterbury region compare to stream trophic state nationally and internationally, and 3) what factors control trophic state in Te Wairewa/Lake Forsyth. I measured rates of stream community metabolism in 21 Canterbury streams over a gradient of riparian canopy cover, and conducted a literature review of national and international studies of stream metabolism. I also examined the occurrence of cyanobacterial blooms in Te Wairewa in relation to water quality and weather from 17 years of measurements, and performed series of nutrient addition assays on the lake to assess nutrient limitation. I found that riparian characteristics strongly controlled stream trophic state by shading, thereby reducing photosynthetic productivity. This overwhelmed the effects of high nitrate concentrations, which increased primary production. Compared to national and international rates of stream metabolism, Canterbury streams were strongly heterotrophic, with low rates of autotrophic production. Catchment streams draining into Te Wairewa were unlikely to be the main source of nutrients supporting large cyanobacterial blooms. Instead, internal lake nutrient loading mechanisms associated with calm weather were likely to supply blooms. My results emphasize the importance of light limitation, nitrogen and heterotrophy in controlling stream trophic state, and nutrient supply and weather in controlling lake trophic state

    Aphasie - sechs verschiedene Typen

    No full text
    corecore