74 research outputs found

    Atlanto-axial rotatory fixation in a girl with Spondylocarpotarsal synostosis syndrome

    Get PDF
    We report a 15-year-old girl who presented with spinal malsegmentation, associated with other skeletal anomalies. The spinal malsegmentation was subsequently discovered to be part of the spondylocarpotarsal synostosis syndrome. In addition, a distinctive craniocervical malformation was identified, which included atlanto-axial rotatory fixation. The clinical and the radiographic findings are described, and we emphasise the importance of computerised tomography to characterize the craniocervical malformation complex. To the best of our knowledge, this is the first clinical report of a child with spondylocarpotarsal synostosis associated with atlanto-axial rotatory fixation

    Quantification in cardiac MRI: advances in image acquisition and processing

    Get PDF
    Cardiac magnetic resonance (CMR) imaging enables accurate and reproducible quantification of measurements of global and regional ventricular function, blood flow, perfusion at rest and stress as well as myocardial injury. Recent advances in MR hardware and software have resulted in significant improvements in image quality and a reduction in imaging time. Methods for automated and robust assessment of the parameters of cardiac function, blood flow and morphology are being developed. This article reviews the recent advances in image acquisition and quantitative image analysis in CMR

    Myocardial tagging by Cardiovascular Magnetic Resonance: evolution of techniques--pulse sequences, analysis algorithms, and applications

    Get PDF
    Cardiovascular magnetic resonance (CMR) tagging has been established as an essential technique for measuring regional myocardial function. It allows quantification of local intramyocardial motion measures, e.g. strain and strain rate. The invention of CMR tagging came in the late eighties, where the technique allowed for the first time for visualizing transmural myocardial movement without having to implant physical markers. This new idea opened the door for a series of developments and improvements that continue up to the present time. Different tagging techniques are currently available that are more extensive, improved, and sophisticated than they were twenty years ago. Each of these techniques has different versions for improved resolution, signal-to-noise ratio (SNR), scan time, anatomical coverage, three-dimensional capability, and image quality. The tagging techniques covered in this article can be broadly divided into two main categories: 1) Basic techniques, which include magnetization saturation, spatial modulation of magnetization (SPAMM), delay alternating with nutations for tailored excitation (DANTE), and complementary SPAMM (CSPAMM); and 2) Advanced techniques, which include harmonic phase (HARP), displacement encoding with stimulated echoes (DENSE), and strain encoding (SENC). Although most of these techniques were developed by separate groups and evolved from different backgrounds, they are in fact closely related to each other, and they can be interpreted from more than one perspective. Some of these techniques even followed parallel paths of developments, as illustrated in the article. As each technique has its own advantages, some efforts have been made to combine different techniques together for improved image quality or composite information acquisition. In this review, different developments in pulse sequences and related image processing techniques are described along with the necessities that led to their invention, which makes this article easy to read and the covered techniques easy to follow. Major studies that applied CMR tagging for studying myocardial mechanics are also summarized. Finally, the current article includes a plethora of ideas and techniques with over 300 references that motivate the reader to think about the future of CMR tagging

    Short-term size-specific distribution and movement patterns of juvenile flatfish in a Pacific estuary derived through length-frequency and mark-recapture data

    No full text
    Evaluating small-scale distribution and movement patterns of juvenile fishes within estuarine systems is necessary for identifying favorable nursery habitats and adequately interpreting local instantaneous growth and mortality estimates. Finescale, size-specific catch per unit effort (CPUE, catch per 500 m tow) and movement of juvenile flatfish were studied in Punta Banda Estuary, Baja California, Mexico, during the summer of 2004. After dividing the estuary into five contiguous sections, habitat utilization and movement were analyzed using two complimentary approaches. We intensively surveyed the estuary throughout the summer to document the size-specific distribution of flatfishes. California halibut and diamond turbot were captured throughout the estuary on all sampling dates, indicating that the entire system serves as habitat for juveniles. Multiple regression analysis indicated that the CPUE of California halibut was significantly and negatively related to temperature and depth, although the model exhibited low explanatory power. In contrast, the CPUE of diamond turbot was only significantly and negatively related to depth. CPUE was not related to salinity for either species. Analyses of site- and time-specific lengthfrequency distributions indicated movement by all flatfishes on the time scale of weeks, which is likely due to the estuarine emigration of fish >140 mm standard length. In addition, an estuary-wide mark-recapture study was performed. Visible elastomer implants were used to tag 697 California halibut, 442 diamond turbot, and 128 spotted turbot. Based on sectionspecific CPUE and the area of the estuary, we tagged 3–6% of the local population of each species in a given month. Four Californian halibut and two diamond turbot were recaptured within hundreds of meters of where they were released. Hence, we observed residency and movement at the same time. This study indicates that short-term movement and its underlying causes should be taken into account when assessing patterns of juvenile habitat utilization.
    corecore